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Higher order topological superconductors hosting Majorana-Kramers pairs (MKPs) as corner modes have
recently been proposed in a two-dimensional (2D) quantum spin Hall insulator (QSHI) proximity-coupled to
unconventional cuprate or iron-based superconductors. Here, we show that such MKPs can be realized using
a conventional s-wave superfluid with a soliton in cold atom systems governed by the Hubbard-Hofstadter
model. The MKPs emerge in the presence of interaction at the “corners” defined by the intersections of line
solitons and the one-dimensional edges of the system. Our scheme is based on the recently realized cold atom
Hubbard-Hofstadter lattice and will pave the way for observing possible higher order topological superfluidity

with conventional s-wave superfluids/superconductors.

Introduction: D-dimensional topological insula-
tors/superconductors (TI/TS) are characterized by a fully
gapped bulk spectrum and stable gapless conducting states
localized on (D — 1)-dimensional boundaries [1, 2]. Ex-
amples include the 3D strong TI with an odd number of
gapless Dirac cones localized on 2D surfaces and the 1D
spinless p-wave superconductors (SC) with zero-dimensional
Majorana zero modes (MZMs) localized near the end points
of the system. By contrast, the recently-introduced so-called
higher order TI/TS are gapped in the bulk as well as on
the (D — 1)-dimensional boundary, but have robust gapless
topological modes on (D — 2)-dimensional “edges” defined
on the boundary, e.g., corners in 2D systems and hinges in
3D systems. This idea has been used to explain the existence
of protected low energy corner modes in 2D quantized
eletric quadrupole insulators [3—11] and the existence of 1D
protected gapless hinge-modes in 3D crystals of bismuth
[12].

It has been recently proposed [13-15] that zero-
dimensional Majorana corner modes (MCMs) in 2D SC sys-
tems can be realized from a combination of 2D TT (QSHI) and
unconventional (non-s-wave) superconductors. Excitations in
these systems come in the form of MKPs, which are distinct
from non-degenerate MZMs [16-26] and are protected by
time reversal (TR) symmetry [27—46]. Unfortunately, MCMs
proposed in the condensed matter systems [13-15, 47-51]
have not been realized to date.

In this paper, we propose ultracold atoms in optical lat-
tices as a clean and straightforward route to realize MCMs
and higher order topological superfluidity with ordinary s-
wave superfluids. 2D QSHI Hamiltonians have now been
experimentally realized in cold atom systems on square op-
tical lattices [52]. These systems are accurately modeled by
a two-component Hofstadter model in a TR invariant scheme
where the atoms experience opposite uniform magnetic fields
for each of the two components [52-59]. Furthermore, s-
wave superfluidity can be induced with an attractive Hub-
bard interaction arising from a Feshbach resonance between
the fermions [60—66]. Specifically, we study a 2D TR invari-

ant Hofstadter model, Hy, with an attractive Hubbard interac-
tion, Hy: H = Hy + H;. The model is characterized by an
interaction-controlled phase transition between a QSHI and a
superfluid (SF). Above a critical value of the attractive inter-
action, both the edge and the bulk have a non-zero superfluid
order parameter due to BCS-like pairing. Since the edge spec-
trum is gapped, the 2D superfluid is topologically trivial, ac-
cording to the conventional (lower order) bulk-boundary cor-
respondence. We show, however, that the superfluid can host
MKPs when a line soliton intersects the edges, changing the
sign of the superfluid order parameter [14, 15]. Dark soli-
tons [67], which have been successfully observed recently in
Fermi gases [68—70] using phase imprinting [71], can arise
as topological defects where the order parameter vanishes and
the phase changes by 7 [72, 73]. Intuitively, the edge states
are gapped by the superfluid order parameter, which acts as a
Dirac mass. At the intersection of the dark line soliton with
the sample edges, the superfluid order parameter (hence the
Dirac mass) changes sign, producing a pair of localized zero-
dimensional MZMs protected by TR symmetry. Tunneling
into the soliton edges can be used to observe these MKPs [72].
We emphasize that the uniform superfluid with no soliton is
topologically trivial (in the conventional sense), with the ap-
propriate 2, invariant [74] being trivially zero because of the
absence of gapless edge modes. Therefore, our work proposes
the first cold atom-based realization of (D — 2)-dimensional
MZMs in what is a D-dimensional topologically trivial sys-
tem in the conventional sense and is thus an experimentally
realizable higher order topological superfluid.

Non-Interacting Model and Hofstadter Bands: The Hof-
stadter model [54] describes non-interacting particles on a
2D lattice in the presence of a perpendicular magnetic field
B = BZ given by the vector potential A = (0, Bx,0). We
consider a generalization of the original model that includes a



spin-dependent magnetic field:
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where (1, j) labels the sites of a square lattice with lattice con-
stant a, c;r’j,g (¢ij,o) creates (annihilates) a particle at (7, j)
with spin 0 = {1, |}, t, = ¢ and [t](i)| = t are nearest-
neighbor hopping amplitudes along the x and y directions,
respectively. We set ¢ = 1 and consider i) periodic bound-
ary conditions, ii) a cylindrical geometry (periodic in the y-
direction and a finite width in the x direction, L, = alN,),
and iii) a rectangular geometry with L, = aN;, L, = alV,,.
The chemical potential is i, while V; ; is a position-dependent
confinement potential (See the Supplemental Material [75]).

In the presence of the (spin-dependent) magnetic field, the
hopping amplitude tg(z) acquires a spin- and z-dependent
phase factor ei2m¢=;.0  with ¢z, 0 = SoeBax;/h. Here,
x; = 1a is position along the z-direction while s4 = 1,5 =
—1 correspond to opposite magnetic field orientations for
the two spin components, which explicitly restores TR sym-
metry, in contrast with the original Hofstadter model. We
define the number of magnetic-flux quanta per unit cell as
a = (Ba?)/¢o, with ¢g = h/e the magnetic-flux quantum,
and we have t7(¢) = te*="*7**, For o = p/q, with p and ¢
primes, the single-particle energy spectrum is given by g sub-
bands ex,, withn = 0,1,2,...,q — 1. Here, we focus on the
case « = 1/3. We expect similar physics for other values of
« that support QSHI phases.

In momentum space, k = (k;, k), Eq. (1) with o« = 0 can
be written as Ho(k) = —2t32, ;. [cos (ky) 4 cos (ky)].
The corresponding energy spectrum has a bandwidth of 8¢ and
the system is topologically trivial. To explore a topologically
nontrivial regime, we consider « = 1/3 and use the Fourier
transform ¢; ;» = Ny />3, €* ¢y 5.5, where T = (i, )
and Nj is the total number of lattice sites. The field-induced
phase factors contained in 7 () give rise to a new period-
icity in the z-direction: e?2™sl = ] i27s0/3 idmso/3 for
¢ mod 3 = 0,1, 2, respectively. We label the non-equivalent
sites in the n*" magnetic unit cell as 3 = 0, 1,2 and we have
xg/a = £(n, ) = ng + B. The corresponding first Brillouin
zone is k, € [—n/q,7/q] and k, € [—m,x]. After Fourier
transforming, we can rewrite Hy as

hO eiky efiky

Ho(k) =Y ol | e hy ety
ko ethy ety p,

® Ik,e (2)

where I,, is the n x n identity matrix, kg = (k, — 27, ky),
Vio = (Cky .0y Chy.0y Ckig0) L » @and hg = 2cos (k, — 27 Ba),
with 8 = 0, 1, 2. The corresponding band structure is charac-
terized by ¢ = 3 spin-degenerate bands with non-zero Berry
curvature )f and non-zero spin-dependent Chern number. Al-
though the total Chern number of a fully-filled band is zero
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FIG. 1. Band structure of the non-interacting two-component Hofs-
tadter model, Ho, with o = 1/3 and periodic boundary conditions in
the y-direction. (a) System with N, = 92 and hard confinement in
the x-direction. (b) System with N, = 92 and soft (Gaussian) con-
finement (See the Supplemental Material [75]). The bulk states are
shown in blue and the red curves represent the gapless edge modes.

due to TR symmetry [76], the corresponding Z, invariant re-
veals a topological-nontrivial QSHI phase.

The characteristic edge modes can be obtained using a
cylindrical geometry with periodic boundary conditions in the
y-direction. The corresponding band structure for a system
with both hard and soft confinement [75] is shown in Fig. 1.
The red lines indicate the (confinement-dependent) gapless
edge states, while the (dense) blue lines correspond to the
bulk spectrum. When the chemical potential intersects the red
lines, e.g., at +k,, the system supports a pair of gapless edge
states (kq, —k,) located along one of the edges and another
pair (—k4, k) located on the other edge. Consequently, if y
lies within a bulk gap, the system is in a topological QSHI
phase with pairs of counter-propagating gapless modes lo-
cated along the edges.

Attractive Interactions: Next, we introduce an attractive
interaction described in real space by the Hubbard term

Hy=-U Z (CRRICRNR 3)

,J
where U > 0 is the magnitude of the on-site attraction. In
cold atom systems, the interaction can derive from an attrac-
tive Feshbach resonance [63, 66]. We study the effect of this
attractive interaction at the mean-field level using a BCS-like
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FIG. 2. (Color online) Left: The mean-field phase diagram obtained
by plotting the self-consistent value of the pairing order parameter A
for kgT = 10~ *t. The dashed-white line indicates the phase bound-
ary. Center: Chemical potential as function of the filling factor for
A = 0. Right: Mean-field A as function of the interaction strength
for two different filling factors. The ng = 1 line shows A # 0 (i.e.
superfluid phase) all the way to U ~ 0, while for no = 2/3 one
needs U ~ 3t to enter the superfluid phase.. The green dotted lines
mark the band edges of the bulk spectrum in Fig. 1.

approximation. In k-space, we have

3N
Hr — Z (ATC_k,m,CkﬁT + ACLBTCT—k,6¢> + 70|A|2,
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where we have introduced a uniform [77] order parameter
A = —(U/No) >\ (c—x,prck,pr), With (...) indicating the
thermal average. At this mean-field level, the total Hamilto-
nian becomes

AL

— i ( he(k)—p
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where Uy = (Y4, Q/Jik,i)T, and hp is the matrix in Eq. (2),
and & = — >, (3u—3|A]?/U + TrE_y,)) is an energy
offset. We solve this model using a self-consistent BCS-like
formalism outlined in the Supplemental Material [75].

The mean-field phase diagram corresponding to Eq. (5) is
shown in Fig. 2. When the chemical potential lies within
the bulk gap, the self-consistent value of the s-wave pair-
ing becomes non-zero only above a finite interaction strength
Ue(p). For U < Ug(u) the system is in a QSHI phase with
A =0, while U > U..(u) corresponds to the superfluid phase
(A # 0). Note that for ;1 € [—2t, —0.7¢t], the phase transi-
tion from a QSHI state with filling factor ng = 2/3 to the SF
state occurs at a critical interaction on the order of 3¢. On the
other hand, at half filling (ny = 1) A # 0 for any finite U and
the system is in a SF phase. Below, we will show that the SF
phase supports MKPs in the presence of a line soliton, when
the order parameter changes sign.
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FIG. 3. Position-dependent pairing potential A(z,y) for a strongly
interacting system with U = 3.5t, i.e., in the SF phase. The pairing
potential is obtained as the self-consistent solution of the mean-field
equations (??-2??) for a finite system with N, x Ny = 50 x 34
and soft confinement (see the Supplemental Material [75]) at finite
temperature, kg1 = 0.01¢. The total number of particles is fixed,
N = 800. Top: Self-consistent solution with constant phase. The
(self-consistent) chemical potential is y = —1.250¢. Bottom: Self-
consistent solution with a line soliton. The chemical potential is i =
—1.248¢t. Note that A(z, y) is nonzero in the bulk — consistent with
phase diagram in Fig. 2(b) — as well as on the boundary of the system,
except along the line soliton.

Soliton-induced Majorana Zero-energy Modes: Next, we
show that in the presence of a line soliton, MKPs emerge at
the “corners” defined by the intersection of the soliton with the
edge of the system, which is in a TR symmetric SF phase. In
the presence of a dark soliton, the order parameter changes
sign, vanishing along a node line. To study the impact of
the soliton, we construct the BdG equations in real space and
solve them self-consistently [75]. We choose the initial value
of the order parameter to be used in the self-consistent scheme
as: A, ; = A, jtanh[(i —28 + 5 cos[(j — )7 /(N, — 1)]) /€],
where A; ; is a constant phase self-consistent solution (i.e.
obtained without the soliton) and £ = 2.5. We then solve the
BdG equations for NV, x N, = 50 x 34 sites and ng = 2/3.

In Fig. 3 we show the self-consistent solution for A(z,y)
for a system with U = 3.5¢ without a soliton (top panel) and
with a line soliton (bottom panel). Note that U > U.(u),
so that, without the soliton, the system is in a SF phase with
a non-vanishing order parameter both in the bulk and on the
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FIG. 4. Top: Low-energy spectrum of the Hofstadter-Hubbard model
with strong interaction (U = 3.5t) within the mean-field approxima-
tion for a system with constant phase pairing potential and parame-
ters corresponding to Fig. 3 (top panel). Bottom: The same but for
parameters corresponding to the bottom panel of Fig. 3. Note that
in the presence of a line soliton the system hosts two pairs of zero-
energy Majorana bound states (red dots). The insets plot the wave
functions of the states marked by arrows.

edge. The bottom panel shows that the soliton changes the
sign of the order parameter, as expected. Note that for U <
Uc(1t) the order parameter vanishes in the bulk, but remains
finite on the edge, where it changes sign in the presence of a
soliton (See Supplemental Material [75]).

The low-energy spectra corresponding to the self-consistent
solutions in Fig. 3 are shown in Fig. 4. The top panel (no
soliton) is characterized by a finite quasiparticle gap and low-
energy states located along the edges of the system (see in-
set). The bottom panel, corresponding to a system with a soli-
ton, has four zero-energy states (red circles) representing the
MKPs. As shown in the inset, the corresponding wave func-
tions are localized at the intersection of the line soliton with
the edges of the system.

Our results show that MKPs can be induced at soliton edges
in a conventional s-wave SF. We have checked that the line
soliton and the corresponding MKPs are robust against small
perturbations (e.g., thermal fluctuations and on-site disorder,
see the Supplemental Material [75]) and are thus topologically
robust.

Implementation: To implement Hy we envision an exper-
imental setup similar to Ref. [52] since this scheme does not
rely on the internal atomic structure. We consider a 3D cubic
optical lattice were confinement along z separates the system
into parallel x — y planes. The 2D Hubbard model then ap-
proximates the dynamics of 4°K or ®Li placed with one atom
per site in a deep optical lattice with uniform hopping ¢ if we
equally populate two Zeeman levels with opposite magnetic
moments. A magnetic field gradient along the y-direction cre-
ates a splitting (much larger than ) between opposite spins in
neighboring sites. In addition to the primary lattice beams, a
pair of running-wave beams are applied parallel to the  — y
bonds of the square lattice to dynamically restore resonant

tunneling assuming the running-wave lattice depth is much
smaller than the spin splitting. This setup induces the complex
spin-dependent phase in Eq. (1) in a rotating wave approxima-
tion.

To implement H; we require an attractive Feshbach reso-
nance. For magnetic Feshbach resonances, typical magnetic
field gradients (~ 10mG/um) leave the attractive interaction
spatially uniform since common resonances occur at relatively
high fields (~ 400 — 700G) and can be broad, as in, e.g., 5Li.
It also safe to assume that close proximity to the Feshbach res-
onance does not lead to strong heating and loss [78] since the
Raman coupling [52] between the same hyperfine states (and
neighboring lattice sites) does not induce any new three-body
loss channel.

Tuning the chemical potential near zero (Fig. 4) allows ob-
servation of MZMs. Spatially resolved radio-frequency spec-
troscopy and probing of the density profile have been pro-
posed as an experimental approach to detect these MZMs
[73, 79]. The soliton-induced MZMs can be manipulated by
controlling the spatial location of the soliton excitation, which
may be beneficial for topological braiding [80, 81] of MZMs.

Discussion and Conclusion: The essential physics for the
creation of MKPs and higher order topological superfluidity
in the current system is similar to the proposals for higher or-
der topological superconductors in solid state systems. In both
cases, the non-SC “normal” system is a 2D QSHI. This system
has counter-propagating Kramers pairs of gapless edge states
(see Fig. 1), which can support spin-singlet superconductivity.
Furthermore, in both systems introducing superconductivity
(by proximity effect in solid state systems and interaction-
induced, via Feshbach resonance, in the present work) gaps
out the edge modes, which signals that the system is a topo-
logically trivial superconductor/superfluid (because the edge
modes are gapped). However, whenever the superconducting
gap changes sign (and thus goes through zero) at a point along
the edge, a Kramers pair of localized MZMs are nucleated by
the Jackiew-Rebbi mechanism, which is common to both the
solid state proposals and the present work (a Kramers pair of
zero modes is nucleated because the system is time reversal
invariant).

The key difference between the solid state case and the cur-
rent set-up is that in the former system the change of sign of
the superconducting gap is proposed to be realized by prox-
imity effect with an unconventional superconductor (such as
d-wave or s;wave, which change sign in momentum space),
while in our work the change of sign of the superconducting
gap is due to a soliton in the s-wave superfluid. The other
significant difference between the two proposals is that, while
the proximity effect of unconventional d or siwave super-
conductivity on QSHI in solid state systems has not yet been
demonstrated experimentally (and is probably going to be
hard) the main ingredients of the same physics within our pro-
posal, namely, the two-component Hofstadter model (and thus
a QSHI, [52-59]), on-site attractive interactions and non-zero
SC pair potential [60—-66], and creation of dark solitons [67—
70], have all been individually realized in the cold atom sys-



tems.
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