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Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as
constraints or components are added. Here we discuss RP with structural correlations, an effect
ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as
colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we
show that structural correlations shift RP to lower volume fractions. Through molecular dynamics
simulations, we show that increasing attraction in colloidal gelation increases structural correlation
and thus lowers the RP transition, agreeing with experiments. Hence, the emergence of rigidity
at colloidal gelation can be understood as a RP transition, but occurs at volume fractions far
below values predicted by the classical RP, due to attractive interactions which induce structural
correlation.

Introduction – The emergence of mechanical rigidity in
soft amorphous solids is central to many material tech-
nology developments from 3D printing with soft, biocom-
patible inks [1] to designing food texture [2, 3], but it is
poorly understood and controlled. The main theoretical
framework is based on the idea that locally rigid struc-
tures, due to mechanical constraints such as chemical
bonds or steric repulsion, percolate through the material.
Hence the problem translates into the onset of rigidity in
a disordered network of springs, an abstraction of the
actual solid, whose rigidity percolation (RP) transition
has been intensively studied especially in relation with
molecular glasses [4–9]. With respect to percolation phe-
nomena controlled by the geometric connectivity [10], the
onset of rigidity requires a mechanically stable spanning
cluster able to transmit stresses, a problem intrinsically
vectorial and long-range [5]. As a result, compared to ge-
ometric percolation, RPs display different critical expo-
nents and occur at higher volume fractions (e.g., 63% for
site RP on a two-dimensional triangular lattice [11] and
36% for site RP on a three-dimensional face-centered-
cubic lattice [12]). It is therefore surprising that soft
amorphous solids such as colloidal gels—formed in sus-
pensions of colloidal particles with prevalently attractive
interactions (due to dispersion or depletion forces)—can
be mechanically rigid at low volume fractions, and even
as low as a few percent [13–15].

Basic formulations of RP ignore any structural corre-
lation: bonds or sites are randomly removed from a lat-
tice, with no correlation between them, until the struc-
ture loses its rigidity. While this approach provided well-
tested predictions for glasses [4], the nature of the rigid-
ity transition can significantly depend on how the final
structure is assembled [7, 9, 16]. For example, when
rigidity emerges as frictionless spheres jam due to com-
pression, a spanning rigid cluster that includes nearly all

particles suddenly appears and, with one more contact,
the whole system is stressed [17–20]. This scenario dif-
fers from basic RP where the spanning rigid cluster is
fractal at the transition, although both transitions (jam-
ming and RP) occur near the isostatic point [18, 21–24],
where the mean coordination number equals two times
the spatial dimensions, 〈z〉 = 2d. The emergence of rigid-
ity in jamming is so different from the classical RP be-
cause the self-organization of the structure, accommodat-
ing the repulsive interactions among the particles as they
are pushed together, dictates the nature of the rigidity
transition. It has been recently suggested that the pres-
ence of attractive interactions may further change the na-
ture of the rigidity transition at jamming [25], but the
emergence of rigidity when the self-organization of the
structure is due to aggregation and gelation in a ther-
modynamic system [15, 26–29] is a much less explored
question and remains fundamentally not understood.

Here we propose and demonstrate that spatial corre-
lations can shift the RP to low volume fractions and are
therefore crucial to the onset of rigidity in materials like
colloidal gels. Using a lattice model in which sites are
occupied with local density correlations, we show that
the RP threshold shifts to lower volume fraction as cor-
relation strength increases, albeit with the same critical
exponents as the classical RP (Fig. 1ab). Our molecu-
lar dynamics (MD) simulations of a colloidal-gel model
where particles aggregate due to short-range attractions
confirm that increasing interaction strength can lead to
RP at progressively lower volume fractions by increas-
ing the correlation strength (Fig. 1cd). A simple way
to illustrate how structural correlations move the RP
to lower volume fractions is that correlations may or-
ganize particles into “smart” thin structures that trans-
mit stress. When particles are arranged on a Warren
truss which is rigid (Fig. 1a inset), the volume fraction
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of this one-dimensional structure on a two-dimensional
plane vanishes in the thermodynamic limit. As we show
below, spatial correlations originating from short-range
attractive interactions naturally prepare particles into
such types of structures, giving rise to rigidity at low
volume fractions.

For suspensions of attractive colloidal particles, struc-
tural correlations are often accessible in experiments and
well rationalized via statistical mechanics: fractal aggre-
gation models, cluster theories and density functional
theories provide good understanding of structural cor-
relations resulting from short-range attractive interac-
tions [30–32]. While for polymer gels it has been long
understood that not all sub-parts of a gel are necessarily
rigid [33], for colloidal gels most of existing studies sim-
ply assume that all persistent clusters or sub-structures
are rigid, in spite of floppy, non-rigid clusters being ob-
served [34]. Hence gelation has been mainly discussed
in terms of the geometric percolation of such structures
and of the related particle localization [35–41]. Only re-
cent work has started to address specifically the rigidity
rather than just the connectivity [34, 42–47]. A clear
view of how the interplay between RP and particle local-
ization in the gel structure gives rise to colloidal gelation
has been therefore so far lacking. Our findings provide
a novel concept and rigorous theoretical framework for
understanding the emergence of rigidity in colloidal gels:
the rigidity of aggregates comes from the coordinated or-
ganization of many interacting particles rather than from
the fact that each single cluster is rigid.

Models and Methods – We use two models to investi-
gate the effect of correlation on rigidity. We work in 2D,
to be able to use a very efficient method for identifying
rigid clusters, the “pebble game” algorithm [5, 48], to ob-
tain the large numerical samples needed to analyze the
RP critical behavior. Nevertheless, all arguments (the-
oretical and phenomenological) extend to 3D. The first
model, the correlated lattice model, is a modified version
of the site-diluted triangular lattice model for RP [11].
Instead of randomly populating lattice sites with a uni-
form probability, we put particles on a triangular lattice
according to the following protocol. At each step, an
empty site is randomly chosen, and a particle is put on
this site with probability

p = (1− c)6−Nnn (1)

where Nnn is the number of its nearest-neighbor sites
which are already occupied (0 ≤ Nnn ≤ 6) and c is a di-
mensionless constant controlling the correlation strength
(0 ≤ c < 1). We start with an empty triangular lattice
and repeat this process until a target volume fraction φl
is reached (subscript l denotes “lattice”), which relates to
the fraction of occupied sites f through φl ≡ πf/(2

√
3).

We then obtain a spring network where all nearest neigh-
bor pairs, if both exist, are connected. The limit of c = 0

a b

c d

FIG. 1. Examples of rigid cluster decomposition of the corre-
lated lattice model (φl = 0.6) at different correlation strengths
[c = 0 in (a) and c = 0.6 in (b)], and the attractive gel model
(φg = 0.6) at kBT/ε = 0.4 in (c) and 0.1 in (d). Red particles
belong to the largest rigid cluster, and other particles are col-
ored in gray. In both models, correlation/attraction induces
rigidity at volume fractions below the rigidity transition in
the uncorrelated/repulsive limit. The rigid clusters percolate
in (b) and (d) where there is strong correlation/attraction,
but not in (a) and (c). The inset in (a) shows an extreme ex-
ample where particles are perfectly correlated (on a Warren
truss) and exhibit rigidity at φ = 0 in thermodynamic limit.

corresponds to the classical RP with no structural corre-
lation (all sites occupied with the same probability).

The second model, the attractive gel model, is an
assembly of interacting colloidal particles, studied via
molecular dynamics (MD) in 2D. The particles interact
through a pairwise Lennard-Jones-like potential which
displays a short range attraction (of depth ε) and a repul-
sive core [49, 50]. We generate configurations at different
volume fraction φg (subscript g denotes “gel”), and differ-
ent ratios between the thermal energy and the attractive
well depth kBT/ε, by solving the many-body Newton’s
equations of motion in a square simulation box with pe-
riodic boundary conditions. In spite of its simplicity, our
simulations include the essential ingredients of thermo-
dynamics and dynamics in colloidal gels. For each par-
ticle configuration, we obtain the corresponding spring
network by assigning bonds between pairs of particles
of center-to-center distance 1.03σ (the inflection point
of the potential) or less. In both models we consider
purely central forces, which have been used successfully
to understand experiments on colloidal gels in a large
part of the literature [15, 41, 43, 49, 51, 52]. Non-central
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forces may also be important [53–57] and can be included
in our approach through bond-bending rigidity [58–60].
Further details of our simulation protocol are included
in the Supplement Information (SI)[61]. We analyze the
rigidity of all the spring networks from the two models us-
ing the pebble game algorithm [5, 48], which decomposes
the networks into rigid clusters. RP occurs when the
largest rigid cluster percolates in both directions, lead-
ing to macroscopic rigidity [9, 70].

Results – In both models, we find that with cor-
relation/attraction, rigidity emerges at volume frac-
tions lower than in uncorrelated cases (Fig. 1). In
the correlated lattice model, we measure two quanti-
ties, the probability of having a percolating rigid cluster
P (φl, c, L), and the average mass of the largest rigid clus-
ter M(φl, c, L), where L is the linear size of the lattice.
Following the notion of percolation, M is the order pa-
rameter of the transition. As shown in Fig. 2, when the
correlation strength c increases, both P and M curves
shift to the left, confirming that RP occurs at a lower φl
in the presence of correlation. Moreover, the gradual in-
crease ofM at the transition suggests that the correlated
rigidity transition is still continuous, as the classical RP.
The fact that P and M for different L intersect at the
same scale-free point confirms this.

We analyze critical scaling relations near the corre-
lated rigidity transition using finite-size scaling (details in
the SI). We first determine the transition point φl,c(c, L)
where the spanning rigid cluster first appears, averaging
over disordered samples. For each c, the transition point
shifts as a function of L following standard finite-size scal-
ing relations with correlation length exponent ν = 1.21
(agreeing with classical RP [5]), towards the infinite vol-
ume limit, φl,c(c, L = ∞). We find that the transition
point decreases with c

φl,c(c = 0, L =∞)− φl,c(c, L =∞) = a c1/ζ , (2)

at small c, where ζ ' 0.76, the coefficient a ' 0.19,
and the c → 0 limit transition point is φl,c(0,∞) ' 0.63
agreeing with the classical RP result (note the extra fac-
tor of π/(2

√
3) converting from site occupancy probabil-

ity to volume fraction).
The data for P andM can then be collapsed using the

following scaling forms

P (φl, c, L) ∼ P̃ [(φl − φl,c(c, L =∞))L1/ν ], (3)

M(φl, c, L) ∼ Ld−β/νM̃[(φl − φl,c(c, L =∞))L1/ν ],
(4)

where ν and β are the critical exponents for the correla-
tion length and the growth of the order parameter (fig-
ures in the SI). These scaling relations share the same
form as ones used in classical RP with the same expo-
nents (ν = 1.21 and β = 0.18) [5], but with correlation
dependent transition points φl,c(c, L =∞) which we de-
termine above.
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FIG. 2. (a) P (φl, c, L) at different L and c (symbols and
line styles defined in legends). Inset: ν for different c (blue
with error bars), in comparison with average (red line) and
standard error (yellow dashed line) of ν in the classical RP
(from Ref. [11]). (b) M(φl, c, L) at different L and c. Inset:
df for different c (blue with error bars), in comparison with
average (red line) and standard error (yellow dashed line) of
ν in the classical RP (from Ref. [11]). In both (a) and (b),
curves for different L cross at the same point (marked by red
lines), indicating continuous transitions at every c at different
φl,c(c, L = ∞).

Our results suggest that correlations play the role of
an irrelevant perturbation at the RP transition. They
shift the transition point φl,c(c, L = ∞) while leav-
ing critical exponents the same as in the uncorrelated
case. Thus, with correlation, the RP still belongs to the
same universality class, as also found in other percola-
tion problems [71, 72]. One way to interpret this result
is that the structural correlations we introduce in the
model are a short range feature. Although they shift
the transition, the critical scaling is controlled largely by
the physics at large lengthscales and is not sensitive to
microscopic modifications. We confirm this by measur-
ing the critical exponents at different c. In particular,
we measure ν via fluctuations of φl,c(c, L) over samples,

∆φ ≡
√
〈φl,c(c, L)2〉 − 〈φl,c(c, L)〉2, as well as the frac-

tal dimension of the giant rigid cluster at the transition
Mc = 〈M(φl,c, c, L)〉. We fit these quantities to their



4

finite-size scaling relations,

∆φ ∼ L−1/ν , (5)

Mc ∼ Ldf , (6)

where the fractal dimension relates to β by df = d−β/ν
(here d = 2 is the spatial dimension). Within error bars,
ν and β agree with those of the classical RP for every c
(Fig. 2 insets).
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FIG. 3. Phase diagram of the correlated lattice model (with-
out and with the strong correlation correction). Calculated
phase boundary φl,c(c, L = ∞) are shown as yellow dots (be-
fore correction: with black circles around the dots, after cor-
rection: without circles; They overlap at small c). The red
dashed line and the black solid line show the phase bound-
aries before and after the correction by connecting the dots,
respectively. The c → 0 limit (classical RP) is shown as
the black dashed line. The insets are configurations taken
at c = 0.9, φl = 0.5 (the yellow star) with and without the
strong correlation correction, which avoids the formation of
disconnected dense blobs and leads to a percolating rigid clus-
ter.

The resulting phase diagram is shown in Fig. 3, with
the phase boundary determined from φl,c(c, L =∞). We
plot the phase diagram in the φl vs 1/c plane for con-
venient comparison with the attractive gel model, where
we identify the rigid gel states in the φg vs kBT/ε plane,
since correlations decrease as both 1/c and kBT/ε in-
crease. In the limit of 1/c → ∞ the transition reduces
to the classical RP, while the boundary shifts to lower
φl as c increases (as discussed above). However, when
c is large (> 0.6) the phase boundary bends back to
higher φl (dashed line in Fig. 3). The reason for this
reentrant behavior is that very strong correlations force
the particles to aggregate into densely packed blobs that
do not percolate. This high c limit would correspond to
a separation of the colloid-dense phase in an attractive
colloidal suspension, rather than to the colloidal gelation
that takes place through dynamical arrest and prevents
the formation of disconnected droplets [51, 56, 59]. To
better capture gelation, we add a correction for strong
correlation: a site can not be occupied if 4 or more of

its neighboring sites are already occupied [p = 0 when
Nnn ≥ 4 and p still obeys Eq. (1) for Nnn < 4]. With
the modified model, the RP transition volume fraction
becomes monotonically decreasing as c increases, in bet-
ter agreement with experiments and our attractive gel
simulation described below.
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FIG. 4. (a) Phase diagram of the attractive gel model. Sim-
ulated parameters (φg, kBT/ε) are shown as squares colored
according to their measured Pg(φg, kBT/ε) (color scale shown
in legend). Black stars show fitted phase boundary at each
kBT/ε and the black line is the phase boundary from fitting
these transition points to third order polynomial. The hard
sphere limit of the transition is shown as a black dashed line.
(b,c) show two example configurations with their rigid cluster
decomposition, chosen at the two marked points on the phase
diagram. The largest rigid cluster percolates in (c) but not in
(b), agreeing with the phase boundary.

Results from rigidity analysis of the attractive gel
model are shown in Fig. 4. We simulate gels of 104

particles in 2D at various φg and kBT/ε, and obtain
the mean probability for the emergence of a percolating
rigid cluster Pg(φg, kBT/ε). At each kBT/ε we identify
the transition point φg,c(kBT/ε) by fitting Pg(φg, kBT/ε)
as a quadratic function of φg and find the point where
Pg = 0.5. These transition points are then fitted to a
smooth curve to construct the phase boundary of rigid-
ity in the φg vs. kBT/ε plane. In Fig. 4ab we show
two sample configurations (with rigid cluster decomposi-
tion) at the same volume fraction φg = 0.6 but for two
distinct values kBT/ε = 0.23 and 0.38 . Large thermal
fluctuations can frequently break bonds, and the result-
ing structure is either a homogeneous gas of particles
(Fig. 1c) or displays phase separation but the large clus-
ters do not show rigidity percolation yet (as shown in
Fig. 4b). In contrast, decreasing kBT/ε, the attraction
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is so strong that the particle-rich regions not only perco-
late through the whole system, but also exhibit rigidity
(Fig. 4c). The phase boundary bends down again at very
strong attraction, where the system goes out of equilib-
rium and the rigidity is dominated by the physics of dif-
fusion limited aggregation [73]. The similarity between
the phase boundaries in the correlated lattice model and
the attractive gel model indicates that the rigidity onset
in dilute systems is favored by the structural correlations
induced by the attractive interactions. Hence, the emer-
gence of rigidity at colloidal gelation can be understood
as a RP transition in which structural correlations help
optimize mechanically stable structures [43, 46].

To summarize, we have studied the rigidity transition
in a diluted triangular lattice model where particles pop-
ulate sites with positional correlation, and a colloidal gel
model with short range attraction using MD simulation.
The two models show similar structural heterogeneities
where particles clusters, forming stress-bearing networks
that percolate through the system at low volume frac-
tions. We analyze critical scaling exponents in the cor-
related lattice model, and find that the rigidity transi-
tion belongs to the same universality class as the classi-
cal RP, but the transition threshold moves to lower vol-
ume fractions as correlation increases. The attractive gel
model further demonstrates that such structural correla-
tions and heterogeneities can naturally arise as a result of
short range attractive interactions in a thermal system.
Deeper understandings of how this structural heterogene-
ity develops in the incipient phase separation and how
it depends on the preparation protocol used for the gel
(for example, the cooling rate or the gelation kinetics in
the simulations) [74], as well as connecting correlated RP
scenario obtained here to the hard sphere limit where no
attraction is present and rigidity emerges at the random
close packing volume fraction (84% in 2D) or to the case
in which different types of topological constraints may be
present [75], will be intriguing topics to explore in future
studies.
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Proceedings of the National Academy of Sciences 108,
4286 (2011).

[30] T. A. Witten and P. Pincus, Structured fluids: polymers,
colloids, surfactants (Oxford University Press, 2004).

[31] J.-P. Hansen and I. R. McDonald, Theory of simple liq-
uids (Elsevier, 1990).

[32] D. Richard, J. Hallett, T. Speck, and C. P. Royall, Soft
matter (2018).

[33] P. G. d. Gennes, Scaling concepts in polymer physics
(Cornell University Press, Ithaca, N.Y., 1979).

[34] A. Dinsmore and D. Weitz, Journal of Physics: Con-



6

densed Matter 14, 7581 (2002).
[35] E. Del Gado, A. Fierro, L. de Arcangelis, and

A. Coniglio, Phys. Rev. E 69, 051103 (2004).
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