
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Disorder-Driven Transition in the ν=5/2 Fractional Quantum
Hall Effect

W. Zhu and D. N. Sheng
Phys. Rev. Lett. 123, 056804 — Published  1 August 2019

DOI: 10.1103/PhysRevLett.123.056804

http://dx.doi.org/10.1103/PhysRevLett.123.056804


Disorder-driven transition in ν = 5/2 fractional quantum Hall effect

W. Zhu1,2 and D. N. Sheng3

1Institute of Natural Sciences, Westlake Institute of Advanced Study and

School of Science, Westlake University, Hangzhou, 030024, China
2Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA and

3Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

The fractional quantum Hall (FQH) effect at the filling number ν = 5/2 is a primary candidate for non-

Abelian topological order, while the fate of such a state in the presence of random disorder has not been re-

solved. Here, we address this open question by implementing unbiased diagnosis based on numerical exact

diagonalization. We calculate the disorder averaged Hall conductance and the associated statistical distribution

of the topological invariant Chern number, which unambiguously characterize the disorder-driven collapse of

the FQH state. As the disorder strength increases towards a critical value, a continuous phase transition is de-

tected based on the disorder configuration averaged wave function fidelity and the entanglement entropy. In the

strong disorder regime, we identify a composite Fermi liquid phase with fluctuating Chern numbers, in striking

contrast to the well-known ν = 1/3 case where an Anderson insulator appears. Interestingly, the lowest Landau

level projected local density profile, the wave function overlap, and the entanglement entropy as a function of

disorder strength simultaneously signal an intermediate phase, which may be relevant to the recent proposal of

Particle-hole Pfaffian state or Pfaffian-anti-Pfaffian puddle state.

Introduction.— The fractional quantum Hall (FQH) effect

[1] is a novel example of topological orders [2], providing

an ideal testbed for fractional statistics [3] [4–6]. In par-

ticular, the quasiparticles obeying non-Abelian statistics are

expected to form the building-block for topological quantum

computation [7, 8], thus is of crucial importance. So far, the

even-denominator FQH system at the filling factor ν = 5/2
is the most promising candidate for experimental realizations

of non-Abelian states [9–17]. While this ν = 5/2 state was

first experimentally identified thirty years ago [9], its exact

nature remains under intense theoretical debate. Among dif-

ferent candidates, the non-Abelian Pfaffian state [4] as a fully

polarized px − ipy paired state of composite fermions [18],

was numerically established as a viable possibility [19–26].

The Pfaffian state breaks particle-hole (PH) symmetry and has

a partner state known as the anti-Pfaffian state [27, 28] which

is also a valid candidate. In the presence of an exact PH sym-

metry, for example by projecting into the first excited Lan-

dau level, the Pfaffian and anti-Pfaffian are exactly degener-

ate, thus the emergence of one over the other is determined by

the PH symmetry breaking, e.g., through Landau level mixing

[29–32]. However, very recently, the thermal Hall conduc-

tance of the ν = 5/2 state is found to be κxy ≈ 5/2 (in units

of thermal conductance quanta) [33], inconsistent with Pfaf-

fian (anti-Pfaffian) state, for which thermal Hall conductance

κxy = 7/2(3/2) are expected.

The experimental observation of thermal Hall conductance

κxy = 5/2 is intriguing and challenge for theoretical un-

derstanding. One plausible interpretation is a PH symmet-

ric Pfaffian (PH-Pfaffian) state realized at ν = 5/2 [34–

36], which is a s-wave pairing state built on Dirac composite

fermions [37]. So far, existing numerical works [19–22, 30–

32] do not support PH-Pfaffian state in microscopic models

with dominant Coulomb interactions. One possible reason

is that the PH-Pfaffian model wave function fails to repre-

sent a gapped and incompressible phase [38–40]. Moreover,

the experimental observation can be alternatively explained

by disorder-induced mesoscopic puddles made of Pfaffian and

anti-Pfaffian states [42–44]. Compared to pure systems, there

are limited studies of the role of random disorder on the 5/2
state, which immediately raises some critical questions: Is

PH-Pfaffian state or Pfaffian-anti-Pfaffian puddle state ener-

getically favorable in a disordered FQH system? In light of

the numerical supports of the Pfaffian (or anti-Pfaffian) in

disorder-free systems, another important question is: what is

the fate of the 5/2 FQH state in the presence of disorder? Gen-

erally, when the disorder strength becomes comparable to the

strength of interactions between electrons, the FQH state will

eventually be destroyed. A characterization of such disorder

driven transition is highly desired to compare with experimen-

tal observations [45]. To date, related studies of the disorder

FQH systems have only been done at ν = 1/3, where it has

been identified a disorder-driven transition from the Laughlin

state to an Anderson insulator [46–48]. It remains unclear to

what extent the above picture will change at ν = 5/2.

In this paper, we investigate the disorder-driven transition

for half-filled first excited Landau level, based on which, we

illustrate a global phase diagram for such a non-Abelian sys-

tem in the presence of random disorder. First of all, we show

that the distribution of Hall conductances and the associated

topological invariant Chern number can be used to distinguish

different quantum phases. We identify a disorder-driven criti-

cal point separating the FQH state carrying a unique quantized

Chern number, from a composite fermion liquid (CFL) that is

characterized by a distribution of fluctuating Chern numbers

for different disorder configurations. This is in sharp contrast

to the ν = 1/3 FQH state, where the Laughlin state undergoes

a transition to an Anderson insulator [46, 47] with vanishing

Chern number at strong disorder side. This phase transition is

also signaled by the variance of wave function fidelity and the

disorder configuration averaged entanglement entropy, both

of which support the same critical point for the collapsing of
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the FQH effect by strong disorder. In addition, we address

the possibility of an intermediate phase in moderate disor-

der strength, potentially relevant to the disorder induced PH-

Pfaffian or Pfaffian-anti-Pfaffian puddle state. Our work not

only identifies a novel quantum phase transition between the

FQH state and a CFL, but also provides strong evidences to

support the theoretical conjecture of disorder-stabilized FQH

phase based on numerical simulations of microscopic model

for FQH systems.

Model and Method.— We consider Ne electrons moving

on a torus under a perpendicular magnetic field. The torus is

spanned by L1 = L1ex and L2 = L2ey , where ex and ey are

Cartesian unit vectors, and L1 and L2 are lengths of the two

fundamental cycles of the torus. Required by the magnetic

translational invariance, the number of fluxes penetrating a

torus is equal to the number of orbitals in one Landau level

Ns = L1L2/(2πℓ
2) (ℓ = 1 is the magnetic length). The total

filling fraction is then defined as ν = ν0 + Ne/Ns (ν0 = 2
for 5/2 FQH systems due to the fully occupied lowest Landau

level). When the magnetic field is strong, we can assume that

electrons in the partially-filled Landau level are spin-polarized

and their dynamics is restricted to the orbitals in the first ex-

cited Landau level. The many-body Hamiltonian is

Ĥ =

Ns−1
∑

mi=0

V m1,m2

m3,m4
â†m1

â†m2
âm3

âm4
+

Ns−1
∑

mi=0

Um1

m2
â†m1

âm2

where a†m(am) is the creation (annihilation) operator of an

electron in the orbital m. By choosing Landau gauge, the mo-

mentum conserved interaction terms can be expressed as

V m1,m2

m3,m4
=

1

Ns

δmodNs

m1+m2,m3+m4

+∞
∑

q1,q2=−∞

δmodNs

q2,m1−m4
V (q)e−

1

2
|q|2ei

2πq1
Ns

(m1−m3),

where V (q) = 1
|q| represents the Coulomb interaction and

q = (qx, qy) = (2πq1
L1

, 2πq2
L2

). The disorder term is

Um1

m2
=

1

2πNs

∞
∑

q1,q2=−∞

δ mod Ns

t,m1−m2
U(q)e−

1

4
|q|2ei

πq1
Ns

(2m1−q2),

where U(q) =
∫

dreiq·rU(r) mimics the random disor-

der. To study the effects of correlated potential, we use

the Gaussian correlated random potential 〈U(q)U(q′)〉 =
W 2

2πNs
δq,q′e−2q2ξ2 , where ξ is the correlation length.

We obtain the ground state {|Φk〉} of Ĥ using exact diag-

onalization (ED) algorithm. Due to the lack of translational

symmetry in the presence of disorder, the system sizes acces-

sible by ED are limited to Ne ≤ 12 by the current computa-

tional capability. In our extensive tests, Ne ≤ 8 systems suffer

from very strong finite size effect as the topological Pfaffian

states are not fully developed for pure system [22], so we will

focus on the Ne = 10, 12 below. We averaged up to 2000 and

500 samples for Ne = 10 and Ne = 12 respectively, which

gives quantitatively reliable results.

Statistics of Chern number.— Identifying topological in-

variant is crucial for characterizing the underlying physics

of topological ordered states. Conventionally, FQH states

are characterized by the Hall conductance and the associated

Chern number [49–51], which determines the intrinsic topol-

ogy of wave function [52] and the corresponding gapless edge

excitations at a system boundary [53]. In the presence of dis-

order, the Hall conductance also offers an unambiguous cri-

terion to distinguish the insulating state from quantum Hall

states in an interacting system [46, 47, 54]. To be specific,

under twisted boundary condition the wave function becomes

|Ψk〉 = exp

[

−i

Ne
∑

i=1

(

θ1
L1

xi +
θ2
L2

yi

)

]

|Φk〉,

and θi is the boundary phases and (xi, yi) is coordinate of

particles. The boundary phase averaged Hall conductance is

σH(k) = Cke
2/h, where Ck for is defined as [46]

Ck =
i

4π

∮

Γ

dθ ·

[

〈Ψk|
∂Ψk

∂θ
〉 − 〈

∂Ψk

∂θ
|Ψk〉

]

.

Here, the closed path integral is carried out along the boundary

Γ of the boundary parameter space (the magnetic Brillouin

zone) 0 ≤ θ1, θ2 ≤ 2π. Ck is equivalent to the Berry phase

(in units of 2π) accumulated when the boundary conditions

evolve along the closed path Γ.

Let us start by discussing the salient features of the Chern

number statistics for different disorder strength. We tune the

aspect ratio L1/L2 to find energy spectrum with six fold near

degeneracy separated from other excited states, which charac-

terizes the particle-hole symmetrized Pfaffian state [20]. Tak-

ing into account that the lowest six states should become de-

generate in the thermodynamic limit, we introduce probability

P (C) of the total Chern number distribution, which describes

the probability that total Chern number of the lowest Ng = 6
near degenerating states is C in our sampled configurations.

For a weak disorder strength (Fig. 1(a)), P (C) takes unity

for C = 3 and zero for C 6= 3 (i.e., the lowest six states

have C = 3 for all the disorder configurations), thus each

nearly degenerated ground state carries a Hall conductance of

σH = e2/2h, which manifests the ν = 5/2 FQH state on a

torus.

In strong disorder regime, disorder tends to change the

Chern number of each state, and results in redistributions of

probabilities of different Chern numbers. As shown in Fig.

1(a), when W > 0.1, P (C) becomes nonzero for C 6= 3,

with nearly equal probabilities for Chern numbers larger or

smaller than 3 to appear in different disorder configurations.

For example, at W = 0.1, P (C = 3) is reduced to 0.95
while P (C = 2) ≈ 0.025. Upon increasing disorder strength,

P (C = 3) monotonically decreases and the distribution of

P (C) becomes broader. The coexistence of different Chern

numbers characterizes the delocalization of quasiparticle ex-

citations. In particular, even though P (C) has a broad dis-

tribution instead of a single nonzero value, we identify the

averaged Chern number remains approximately quantized to
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FIG. 1. (a) Probability distribution P (C) of total Chern number C
for various disorder strength W . Here we set ξ = 1.0 for a system

with Ne = 10 electrons. The Hall conductance σH and its fluc-

tuation (δσ)2H versus disorder strength W for (b) ξ = 0.0 and (c)

ξ = 1.0. The error bar shows the standard error in the disorder aver-

aged value.

〈C〉 ≈ 3, for example, 〈C〉 ≈ 2.98 at W = 0.24. This ob-

servation demonstrates each ground state still carries nonzero

averaged Hall conductance in strong disorder regime, which is

consistent with a CFL rather than an Anderson insulator. [59]

A plausible understanding comes from the fact that, various

FQH ν = 5/2 states such as Pfaffian and anti-Pfaffian, can be

interpreted as pairing states built on a half-filled CFL [37, 55]

with different underlying pairing symmetries [18]. While the

transition follows the destruction of the pairing mechanism

by disorder, disorder cannot localize composite fermions at

half filling, since the backscattering and localization are sup-

pressed due to the intrinsic π−Berry phase [56–58] [70, 71].

As a comparison, in the case of ν = 1/3 FQH, strong disor-

der destroys the quantization of the Chern number and leads

to 〈C〉 ≈ 0, which suggests a topologically trivial Anderson

insulator in disorder dominating regime [46, 47][72].

To quantify the evolution of Chern number statistics with

respect to disorder strength, we demonstrate the fluctuation of

the Hall conductance 〈δσ2
H〉 as a function of disorder strength

W in Fig. 1(b-c). In the weak disorder regime, we ob-

serve that Hall conductance carried by each ground state is

always quantized to 〈σH〉 = e2/2h with little fluctuation

〈δσ2
H〉 ≈ 0. In strong disorder regime, despite 〈σH〉 is quan-

tized, the broad Chern number distribution leads to a finite

fluctuation of the Hall conductance 〈δσ2
H〉 6= 0. We can iden-

tify a critical disorder strengthWc separating a FQH state with

zero fluctuation from a critical state with finite fluctuations as

marked by arrows in Fig. 1(b-c). The above picture holds for

all correlation length ξ and system sizes we tested[60].

Entanglement Entropy.— Topological phases are character-

ized by the long-range quantum entanglement patterns [73–

75]. As a novel application, it is found that the entangle-

ment entropy is sensitive to the quantum criticality, in both
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FIG. 2. (a) Entanglement entropy S versus disorder strength W of

Ne = 10 electrons for various correlation length ξ. The data for

different ξ is shifted in the vertical direction for clarity. (b) Derivative

of entropy with respect to the disorder ∂S/∂W for ξ = 1.0.

clean systems [76, 77] and disordered Abelian FQH systems

[48, 78]. Fig. 2 shows the evolution of entropy by increasing

disorder strength at ν = 5/2. [79] We find that the entropy

S monotonically decreases with the increase of W . Impor-

tantly, a kink develops near the critical strength Wc (indicated

by arrows in Fig. 2(a)), where the slope of entropy shows dis-

continuity (Fig. 2(b)). This sudden change of ∂S/∂W shows

a consistent signature of the expected quantum phase transi-

tion. Moreover, we also identify a trend of the increasing of

the critical Wc for larger value of ξ. Importantly, the entan-

glement measurements give largely consistent identifications

of the quantum critical point Wc, compared to that identified

by Chern number statistics (Fig. 1).

Implications for an intermediate phase.— The evolution of

Hall conductance and its fluctuation unambiguously pin down

the phase transition between the 5/2 FQH state and CFL state.

However, it is incapable to distinguish the precise nature of

different FQH states, because possible candidates, including

Pfaffian, anti-Pfaffian or PH-Pfaffian state, carry the same Hall

conductance. Next we further explore the phase transition

at the wave function level. First, we define the wave func-

tion overlap matrix: Oij = 〈Φi(W )|ΦPf
j (W = 0)〉, between

the lowest six states for disordered system with the Pfaffian

states, and the total overlap 〈O〉 (fidelity) as the summation

of eigenvalues of the overlap matrix, where 〈..〉 indicates the

average over the disorder configurations. In Fig. 3, we show

that the wave function fidelity monotonically decreases with

the increase of the disorder, which does not show a clear sig-

nature of the possible quantum phase transition between dif-

ferent FQH states. Interestingly, we find that the fluctuation

of wave function fidelity 〈(δO)2〉 is sensitive to the phase

transition. This is because in the pure system, the wavefunc-

tion is characterized by Pfaffian (anti-Pfaffian) wavefuction,

which is a product of Laughlin state for bosonic ν = 1/2
and a px ± ipy wavefunction for composite fermions. Physi-

cally, the fluctuation of wave function fidelity 〈δO2〉 can de-

tect the phase fluctuations of wavefunction deviating from the

px ± ipy form. To be specific, we identify a single peak in

〈δO2〉 for short correlated length (Fig. 3(a,e)), which indi-

cates a single phase transition by tuning disorder strength W .

For disorder with long correlated length, we find a two-step

phase transition, evidenced by 〈δO2〉 experiencing two sud-
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den jump around W∗ and Wc (e.g. Fig. 3(b,c)). It demon-

strates an intermediate regime with finite 〈δO2〉 emerging be-

tween W∗ < W < Wc. This observation signals an interme-

diate phase stabilized by correlated disorder. The upper bound

of this intermediate regime Wc separates the FQH state from

the non-FQH state, and the lower bound W∗ indicates another

transition point from pure Pfaffian (or Anti-Pfaffian) to inter-

mediate phase.

To inspect the effect of disorder in real space, we show the

projected electron density ρ(r) in Fig. 4, which is the equiv-

alent electron density describing the spatial distribution of

the guiding center [80–82]. The many-body density of states

is qualitatively distinguishable from the pure limit: Density

modulation is pronounced in spatial space and forms puddle

structures starting from W & W∗.

The appearance of additional critical strength W∗ in the

variance of wave function fidelity and projected electron den-

sity, is suggestive of a possible intermediate phase stabilized

by correlated disorder approximately within W∗ . W < Wc.

At quantitative level, nonzero correlation length pushes the

critical Wc to larger value (Fig. 3(b,c,f,g)) leaving a wider

region for the intermediate phase, which again indicates that

an intermediate phase is favored by correlated disorder. Ac-

cordingly, we label an intermediate FQH phase in the phase

diagram (Fig. 3(d,h)). The intermediate regime exists on both

system size Ne = 10 and Ne = 12, based on which we specu-

late that it would maintain in the thermodynamic limit. These

observations are consistent with the theoretical pictures for

the disorder stabilized PH-Pfaffian state [34] or Pfaffian-anti-
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FIG. 3. Averaged wave function fidelity 〈O〉 and fluctuation of wave

function fidelity 〈δO2〉 as a function of disorder strength W for vari-

ous correlation length ξ = 0.5, ξ = 1.0 and ξ = 1.5. The calculation

is performed on the systems with Ne = 10 (top panel) and Ne = 12
(bottom panel). The intermediate phase is marked by light yellow

which is determined by finite fluctuation 〈δO2〉. The phase diagram

determined from the 〈δO2〉 is shown in (d) and (h).
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FIG. 4. The projected electron density ρ(r) for various disorder

strength for ξ = 1.0 for systems with Ne = 10.

Pfaffian puddle state [42–44].

Summary and Discussion.— We have presented a system-

atic numerical study of correlated disorder driven quantum

phase transition for ν = 5/2 fractional quantum Hall ef-

fect. First of all, the distribution of topological Chern num-

bers and corresponding Hall conductance fluctuations are ca-

pable of directly probing the collapse of the fractional quan-

tum Hall state, which also determines the quantum critical

points for random disorder with different correlation lengths.

Second, the phase transition is also signaled by the wave func-

tion fidelity and entanglement entropy. The critical disorder

strength obtained from different methods is consistent with

each other, validating the reliability of our numerical results.

Third, in strong disorder regime, we identify a composite

Fermi liquid as the ground state, rather than an Anderson insu-

lator as realized at filling number ν = 1/3, demonstrating rich

physics for strongly correlated disorder systems. Last but not

least, our results imply a possible intermediate phase stabi-

lized by correlated disorder potentials, as evidenced by fluctu-

ations of wave function fidelity and the puddle-like structures

in projected density of states. Although we cannot pin down

the nature of the intermediate phase, these results provide the

essential step towards understanding the nature of the disor-

der stabilized 5/2 quantum Hall state in the half-filled first ex-

cited Landau level from a microscopic point of view. We esti-

mate some existing experiments would fall into the intermedi-

ate regime (see [60]), which will motivates more experimental

activities searching for disorder stabilized 5/2 state. Further-

more, our work indeed opens up several directions for further

exploration. For example, to connect with the previous stud-

ies on network models [42, 43], it is important to identify the

neutral chiral modes on the domain walls between randomly

distributed puddles. In addition, diagnosis of quantum fluctu-

ations via various quantities shown here provides a practical

way to study quantum criticality for general disordered inter-

acting fractionalized topological systems.
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