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We demonstrate an unusual manifestation of coherent scattering for electron waves in mesoscopic
quantum point contacts, in which fast electron dynamics allows the phonon system to serve as a
quasi-static source of disorder. The low-temperature conductance of these devices exhibits a giant
(� 2e2/h) zero-bias anomaly (ZBA), the features of which are reproduced in a nonequilibrium
model for coherent scattering from the “frozen” phonon disorder. According to this model, the ZBA
is understood to result from the in situ electrical manipulation of the phonon disorder, a mechanism
that could open up a pathway to the on-demand control of coherent scattering in the solid-state.

PACS numbers: 73.21.Hb, 73.23.Ad, 73.63.Nm, 71.10.Pm

The coherent scattering of propagating waves has long
been studied in the literature, in the context of both clas-
sical and quantum transport. Examples include strong
[1–6] and weak [7–10] localization, and universal conduc-
tance fluctuations [11, 12]. In this work, we demonstrate
an unusual manifestation of coherent electron scatter-
ing, in the low-temperature electron transport through
quantum point contacts (QPCs, see Figs. 1). These
devices are characterized by a low level of structural
(impurity- or defect-related) disorder, which allows us
to access a regime in which phonon excitation functions
as a controlled source of disorder. We show here how the
phonon induced lattice distortion that is the source of
this disorder may be manipulated via the ambient tem-
perature, and by the size of the bias applied to generate
transport through the device. The temperature deter-
mines the amplitude of the disorder at thermal equilib-
rium, while the bias allows drifting electrons to stochas-
tically impart energy and momentum to the crystal lat-
tice, thereby leading to the emergence of different dis-
order behaviors. These concepts are applied to account
for a remarkable feature in the QPCs, namely a giant
zero-bias anomaly (ZBA) in their differential conduc-
tance [gd(Vd) = dI/dVd, where Vd is the applied source-
drain bias, and I the electrical current]. The anomaly
is characterized by a precipitous drop of conductance, as
either the temperature or bias is increased, behavior that
we reproduce with nonequilibrium transport calculations.
These attribute the anomaly to a coherent scattering pro-
cess involving multiple quantum channels (or subbands),
in a manner that may be controlled directly via the bias
and/or temperature.

The QPCs [13, 14] we study were formed in the two-
dimensional electron gas (2DEG) of a GaAs/AlGaAs
heterostructure [see Sec. S1 of the Supplemental Ma-
terial (SM) [15] for further details]. At low tempera-

tures, the superposition of thermally-activated acoustic
phonons generates a stochastic variation of the crystal
lattice, which may in turn be viewed as a random con-
tribution to the confining potential of the QPC (see Fig.
1(b)). Crucial here is the slow dynamics of this contri-
bution, a point that may be made by using the equipar-
tition concept to determine the characteristic time scale
(τph) of phonon motion. Equating the phonon energy
(h/τph) to the thermal energy ( 1

2kBT , where kB is the
Boltzmann constant), we obtain τph = 2h/kBT . At a
representative temperature of 10 K this scale is around
10 ps, longer than the time needed for electrons to tran-
sit through the QPC. Taking account of the depth of the
2DEG layer, and assuming an effective QPC length of
500 nm (and a Fermi velocity of 2 × 105 ms−1), for ex-
ample, the transit time (τtr ∼ L/vF , where vF is the
Fermi velocity and L is the QPC length) should be no
more than a few (2 − 3) ps. In other words, for tem-
peratures close to, or lower than, this value, the frozen-
phonon concept should be valid and individual electrons
transitioning through the QPC will observe quasi-static
atomic disorder, arising from the instantaneous distor-
tion of the crystal lattice by the phonons. At higher
temperatures, as the phonon period decreases, this crite-
rion will no longer be met for electrons as they transition
across the full device. Nonetheless, there should still be
significant sections, connected in series with one another,
inside each of which the frozen-phonon concept should be
valid [11].

The spatial scale of lattice distortion generated by
the phonon motions may be estimated from the ther-
mal wavelength of the acoustic modes (λph = vsτph =
hvs/kBT ). Here, vs is the sound velocity, which we take
to be 4000 ms−1 for the (001) surface of GaAs. In this
way we obtain λph ∼ 20 nm at 10 K, implying multiple
scattering within the QPC (λph < L). Since the scatter-
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ing length λph increases at lower temperatures, we expect
coherent scattering from the frozen disorder to be effec-
tive over a specific range of temperature, which should
be high enough to ensure that L/λph > 1, yet low enough
to satisfy the frozen-disorder approximation (τph > τtr).
For a more detailed discussion of these points we refer
the reader to Sec. S2 of the SM, where evidence for
these regimes is found in measurements made down to
mK temperatures.

The implications of coherent scattering in one-
dimensional transport were considered in the seminal
work of Landauer [16, 17]. Extending his findings to a
quasi-one-dimensional conductor of length L, whose car-
riers are scattered by static impurities on a length scale
Ln (where the subscript denotes the nth transport mode),
the conductance decays as:

gd(L) ≈
∑
n

e−L/Ln . (1)

In this work, we explicitly demonstrate (in experiment
and theory) a ZBA with such strong conductance scaling,
and argue that it arises from the coherent scattering gen-
erated by the frozen displacements of the lattice, which
strongly mix the (originally ballistic) 1D subbands into
decaying transport modes with short Ln.

In contrast to prior works that have explored the quan-
tized conductance of QPCs at very low temperatures
[14, 18, 19], in this Letter we focus on the behavior
observed at higher temperatures, where the frozen lat-
tice displacements generated by the phonons give rise to
considerable inter-subband scattering. Our experiments
make use of heterostructures whose 2DEG lies far (more
than 500 nm, see Sec. S1 of the SM) below the sur-
face gates. This results in weaker lateral confinement of
carriers than is common in typical experiments, consis-
tent with which we note that the usual 1D conductance
quantization is only clearly manifested for the lowest-
order plateaus in our devices. This can be seen in the
right inset to Fig. 1(a), which plots the low tempera-
ture (20 mK) linear conductance [G ≡ gd(Vd = 0)] of
one of our QPCs, as a function of its gate voltage (Vg).
While clear plateaus are present at 0.7 and 1 × 2e2/h
[14], opening the QPC up to increase conduction rapidly
suppresses the higher plateaus. Similarly, the quantiza-
tion is suppressed quickly with increase of temperature,
being absent completely for the range (4.2 K < T < 40
K) over which we focus in this study.

The ZBA of interest here is presented in Fig. 1(a),
which shows the low-temperature differential conduc-
tance of one of our QPCs at various gate voltages. The
ZBA corresponds to the dramatic drop in conductance
that is observed for drain biases of just a few mV. De-
pendent upon the initial conductance, the anomaly can
be several multiples of the basic conductance quantum
(G0 = 2e2/h) in size, indicating it arises from scattering
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FIG. 1: (a) Differential conductance of a QPC with asymmet-
ric gate geometry at 4.2 K. Gate voltage is varied in 20-mV
increments from −1.82 V (top) to −2.36 V (bottom). The left
insets are scanning-electron micrographs of symmetric (top)
and asymmetric QPCs. The right inset shows the quantized
conductance in a typical QPC at 20 mK. (b) Schematic repre-
sentation of three different frozen-phonon realizations (labeled
in figure). These “snapshots” of the lattice vibration schemat-
ically denote the instantaneous displacement of GaAs atoms
from their equilibrium positions. (c) Contour plots showing
the variation of differential conductance for an asymmetric
(left panel) and asymmetric (right panel) QPC.
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FIG. 2: (a) Temperature dependence of the ZBA in an asym-
metric QPC at fixed gate voltage. (b) Temperature depen-
dence of the zero-bias conductance of the device of (a) at
different gate conditions. The solid lines are fits to gd(Vd =

0, T ) = g0,T + ∆gT e
−T/T0 , where T0 varies from 10.4- to 7.4-

K, from top to bottom, respectively. The inset shows corre-
sponding theoretical calculations with a chemical potential in
the QPC of 10 meV (red), 6 meV (blue) and 3 meV (cyan).
(c) The voltage dependence of ZBA of a symmetric QPC at
different temperatures. Only a fraction of data are shown

and solid lines are fits to gd(Vd) = g0,Vd + ∆gVde
−(Vd/V0)
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induced within multiple subbands. This is to be con-
trasted with more-widely studied forms of ZBA, such as
those associated with Kondo [20–22] and Majorana [23–
25] physics, which are attributed to many-body effects in
the lowest subband and whose size is usually smaller than
G0.

In Fig. 1(c) we demonstrate that that the ZBA is
present for QPCs with both symmetric and asymmet-
ric gate configurations (see the upper-left insets of Fig.
1(a)), indicating that this feature is intrinsic to nonequi-
librium transport, regardless of the precise potential pro-
file of the devices. The anomaly is followed by a sudden
crossover to the opposite behavior at nonzero bias, with
the differential conductance now increasing with further
increase of the voltage. Importantly for the formulation
of our model, both the ZBA, and the subsequent recovery
of conductance, occur at voltages below those for which
the excitation of optical phonons is expected to be sig-
nificant in GaAs [26–28].

In Fig. 2(a) we present another example of the ZBA,
showing how it is strongly damped with increase of tem-
perature above 4 K. Reflecting this, the temperature de-
pendence of the zero-bias conductance [gd(Vd = 0, T )]
is plotted (for four gate voltages) in Fig. 2(b), and de-
creases by several multiples of G0 when the tempera-
ture is raised to 50 K. While this very large conductance
change is uncharacteristic of typical mesoscopic phenom-
ena, and occurs over a range for which the 2DEG conduc-
tivity is virtually independent of temperature [29], it does
appear consistent with the exponential decay of Eq. (1),
as indicated by the solid lines through the data. These
follow the form gd(Vd = 0, T ) ∝ e−T/T0 , where T0 is an
effective temperature.

The voltage-dependent lineshape of the ZBA [see
Fig. 2(c)] is also consistent with an exponential scaling,

which in this case varies as gd(Vd) ∝ e−(Vd/V0)
2

(where
V0 is a characteristic voltage scale). Important to note
here are the different functional forms of the tempera-
ture and voltage scaling, and the fact that eV0 � kBT0.
These characteristics suggest that a simple interpretation
of the influence of the drain voltage in terms of equivalent
heating is not appropriate.

To formulate a theoretical description of our results,
we begin from a simple, heuristic argument. Within the
frozen-phonon model, lattice disorder arises from the ex-
citation of long-wavelength acoustic phonons, which gen-
erate random “strain” [~ϕ(r)] in the crystal on a scale
(∼ λph) much longer than the interatomic spacing. There
are two contributions to this strain: (i) random and
isotropic phonon excitations at thermal equilibrium (Fig.
1(b), left panel), and; (ii) nonequilibrium excitations un-
der bias, arising from the continuous transfer of energy
and momentum from drifting electrons to the lattice. At
steady-state, this transfer maintains a rigid shift of the
Fermi sphere, and imparts linear momentum from elec-
trons to phonons, thereby causing the lattice disorder to
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FIG. 3: (a) Computed differential conductance at different
chemical potentials. The insets are maps of the electron den-
sity originating from the source lead at µ = 6 meV, and at
the indicated temperatures (left column, Vd = 0) and biases
(right column, T = 4 K). At Vd = 25 mV, recovery of the
wavefunction amplitude is evident in the bottom-right panel.
(b) and (c) Eigenvalues of the transmission matrix and their
dependence on bias and temperature, respectively (µ = 10
meV, ∆ = 1 meV). In (b), open (closed) symbols are for
Vd = 0 (20) mV while in (c) open (closed) symbols are for
T = 2.3 (23) K.

develop a directional character, along the axis defined by
the bias (as indicated in the center and right panels of
Fig. 1(b)). In a certain sense, this may be thought of as
the inverse of the phonon-drag effect that has previously
been demonstrated in 2DEG systems [30]. To appreciate
how the application of even a small (mV) bias voltage
may give rise to significant disorder, we note that the
corresponding electric field it gives rise to is in the range
of kV/cm.

In a tight-binding description of electron transport,
the lattice displacement ~ϕ(r) modifies electron hopping
and serves as a source of scattering. In the case where
temperature alone is varied, the induced displacement
may be estimated in the equipartition limit by equating
the thermal energy (∝ kBT ) to the lattice elastic energy
(∝ |~ϕ|2). This gives |~ϕ| ∝

√
T , which, when introduced

into Fermi’s golden rule, yields a scattering rate propor-
tional to |~ϕ|2. Relating this rate to a corresponding scat-
tering length Ln(T, Vd = 0) ∝ 1/|~ϕ|2 ∝ 1/T , we then use
Eq. (1) to arrive at the temperature-dependent conduc-
tance, gd(Vd = 0, T ) ∝ e−T/T0 . This dependence is in
good agreement with what we observe in experiment, as
shown in Fig. 2(b).

In contrast to the effect of temperature, the applied
bias will generate two forms of lattice displacement [see
Fig. 1(b), center panel]: (i) a uniform shift due to net
momentum transfer, superimposed upon which is; (ii) a
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random term that reflects the stochastic nature of the
electron-phonon scattering. The random component is
estimated by relating the elastic energy to the electrical
power (∝ V 2

d ), dissipated during the approach to steady-
state. [Note that the time required to reach this nonequi-
librium state should be much longer than the electron
transit time (τtr) through the QPC. Furthermore, the
accumulated effects of this dissipation will not be limited
to the immediate vicinity of the QPC, but will extend,
also, into the reservoirs.] Following similar steps to those
above, we obtain Ln(T ≈ 0, Vd) ∝ V −2d and a correspond-

ing differential conductance gd(T ≈ 0, Vd) ∝ e−(Vd/V0)
2

.
Once again, this form is consistent with experiment, as
shown in Fig. 2(c).

The heuristic arguments above motivate the develop-
ment of a quantitative model of nonequilibrium transport
in QPCs, subject to a random potential that is controlled
by temperature and bias. This problem is discretized on
a square grid, with a lattice spacing (a = 10 nm) that is
comparable to the phonon wavelength (λph ∼ 20 nm) at
10 K. The in-plane displacement within each cell of this
grid is then expressed as:

~ϕ(r)

a
= α

(
kBT

ε0

)1/2

~u(r) +

(
eVd
ε0

)
[β1 + β2v(r)]x̂, (2)

where the energy unit ε0 = 1 meV, ~u(r) is a random vec-
tor with magnitude in the range [0, 1], v(r) is a random
number in the range [−1, 1], and x̂ is the unit vector along
the applied electric field. For the purpose of calculation,
the coefficient α that governs the temperature-dependent
term in this equation was estimated from the 2DEG mo-
bility, yielding α = 0.015. (We refer the reader to Sec.
S3 of the SM for details of our model, and a discussion
of its equivalence to conventional scattering theory [31–
33] and the theory of elasticity [34]). The coefficients
β1 and β2 define the static and random displacements
due to the bias, respectively, and, while little is known
about their values a priori, we assume that they are both
smaller than α. As justification for this, we note that the
process by which the bias-induced displacements are gen-
erated should be less effective than that responsible for
the thermally-driven ones.

Kawamura and Das Sarma [35] have studied the rate
of electron scattering by acoustic phonons in a 2DEG,
demonstrating a saturation for electron energies beyond
the Fermi level. Motivated by this, we impose an up-
per bound (∆am ≡ |~ϕ|max) on the bias-induced displace-
ments, which we set at 3% of the discretization spacing a
(see Sec. S3.2 of the SM for a more detailed justification).
We impose this bound via the mapping:

~ϕ 7→ ∆amêϕ tanh
|~ϕ|

∆am
, (3)

with the unit vector êϕ ‖ ~ϕ. The hyperbolic tangent in
this phenomenological expression yields the correct be-

havior for the temperature- and bias-dependent displace-
ments, including their required saturation at larger values
of these parameters. Of particular interest is the case
of large voltage, for which the displacements develop a
strong alignment along the field direction, implying that
the phonon-induced disorder has been (at least partially)
lifted [see Fig. 1(b), right panel]. It is this effect that we
attribute to the restoration of conductance at nonzero
bias, seen in the experiments.

To calculate the differential conductance within our
model, we use nonequilibrium Green’s function method,
with the hopping disorder generated by the displace-
ments in Eqs. (2) and (3) (see the SM for further details).
In Fig. 3(a), we plot this conductance for four different
values of the chemical potential (equivalent to different
gate voltages), after averaging over 500 random disor-
der configurations. In spite of the microscopic simplicity
of our model, the calculations reproduce the giant ZBA
(with amplitude much larger than G0) and the recovery
of conductance at higher voltages. Another feature of the
experiment that is reproduced is the suppression of the
anomaly as the zero-bias conductance is reduced towards
2e2/h (compare Figs. 1(a) & 3(a)). This behavior arises
from the fact that the phase-space for elastic intersub-
band scattering, responsible for the ZBA, is dramatically
reduced as the last subband is depopulated.

Using parameters that are consistent with the litera-
ture (see the SM), and with the experimentally-measured
mobility, our calculations demonstrate that the ZBA
arises from coherent scattering generated by the bias-
controlled lattice displacements. In the inset to Fig. 2(b),
we show that the calculated temperature dependence of
the zero-bias conductance is consistent with the corre-
sponding experimental variations. An important ques-
tion that arises here concerns the extent to which these
variations arise from a coherent, as opposed to an inco-
herent, scattering effect. To address this issue, we note
that the temperature-dependent variation of the zero-
bias conductance is stronger (in both experiment and
theory) than one would expect for an incoherent effect.
To establish this point, we may perturbatively compute
the conductance variation expected in our model in the
presence of incoherent scattering. For a zero-bias dis-
placement defined according to Eq. 2, this yields a scat-
tering rate (see Eq. S10 of the SM), and thus a zero-bias
resistance, that varies linearly in T . As we demonstrate
in Sec. S3.2 of the SM, the linear dependence is slower
than that which arises when accounting for coherence in
transport.

In Figs. 3(b) & 3(c) we plot the eigenvalues of the
transmission matrix (τn, see Sec. S3.4 of the SM),
which describe the quantum-mechanical overlap of the
source and drain through the nth transport mode. In the
limit of either low temperature or bias (open symbols),
where the disorder is minimized, the eigenvalues show
the usual quasiballistic crossover from strongly trans-
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mitted (τn ∼ 1) to heavily reflected (τn � 1) modes,
once n > µ/∆ (where µ is the chemical potential in-
side the QPC, and ∆ is the subband spacing). At el-
evated temperature or bias, however, the increased dis-
order generated by the lattice displacements suppresses
this crossover and the eigenvalues instead show a ten-
dency for exponential decay, behavior that is reminiscent
of the influence of localization [36]. The lack of any
clear crossover in this case, from transmitted to reflected
modes, points to strong mixing of the original subbands
of the QPC. Also important in this regime is that the
eigenvalue transmission for all modes shows a scaling (i.e.
a slope) that is close to that of the original evanescent
ones.

The electron density originating from the source is cal-
culated for a single (unaveraged) disorder configuration
in Fig. 3(a). The left column shows the influence of
increasing temperature, and reflects the corresponding
growth of the phonon-driven disorder. The right column,
on the other hand, captures the effect of the drain volt-
age, and shows a clear signature of conductance recovery
at the largest bias that is consistent with the “restora-
tion” of order described by Eq. (3).

In conclusion, we have demonstrated a giant ZBA in
QPCs, arising from coherent scattering of electron waves
in the presence of frozen phonon disorder. Comparison
of our experiment with the results of a nonequilibrium
model reveals how transmission of the quasiballistic QPC
subbands is progressively suppressed, as the phonon dis-
order is increased via thermal or electrical control. In
the latter case, application of the drain bias first causes
a ZBA, which is followed by a partial recovery of con-
ductance at larger bias due to a “restoration” of lattice
order. These observations arise from the interference of
electron waves that undergo multiple scattering from the
phonon disorder. Our results should be broadly appli-
cable to other nanoscale conductors, including molecular
wires, nanotubes and metallic nanojunctions.
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