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Topological insulators with the time reversal symmetry broken exhibit strong magnetoelectric and
magneto-optic effects. While these effects are well-understood in or near equilibrium, nonequilibrium
physics is richer yet less explored. We consider a topological insulator thin film, weakly coupled to
a ferromagnet, out of thermal equilibrium with a cold environment (quantum electrodynamics vac-
uum). We show that the heat flow to the environment is strongly circularly polarized, thus carrying
away angular momentum and exerting a purely fluctuation-driven torque on the topological insu-
lator film. Utilizing the Keldysh framework, we investigate the universal nonequilibrium response
of the TI to the temperature difference with the environment. Finally, we argue that experimental
observation of this effect is within reach.

Three-dimensional topological insulators (TIs) are a
new class of matter whose electronic wavefunctions pos-
sess a nontrivial topology [1–6]. While TIs are insulating
in the bulk similar to trivial insulators, their surfaces
have unconventional properties since they harbor Dirac-
like gapless states protected by time-reversal symmetry—
the latter is dictated by the bulk state, an example of
the correspondence between the bulk and the edge. This
new paradigm and its various applications have attracted
tremendous interest in recent years. If the time reversal
symmetry is weakly broken, for example, by proximity to
a ferromagnet or by applying a magnetic field, the topo-
logical insulator exhibits a topological magnetoelectric ef-
fect [7, 8]. Motivated by their exotic electronic response,
optical properties of TIs have also been investigated ex-
tensively [7–12]. In fact, a topological magneto-optical
response has been identified: For thin-film TIs, Fara-
day and Kerr angles are predicted to be universal and
quantized in units of the fine structure constant [7, 13–
18]. Recent experiments have directly measured these
quantized values [19]. In general, electronic and optical
response can be understood from the linear response the-
ory appropriate to systems in or near equilibrium. How-
ever, the investigation of far-from-equilibrium physics in
topological systems has remained elusive.

In this work, we consider a thin TI film at finite tem-
perature, weakly coupled to ferromagnetic insulators on
both top and bottom surfaces of the TI, immersed in an
environment at zero temperature. Ferromagnetic insula-
tors and the bulk of the TI are assumed to have a large
intrinsic band gap and a negligible optical response. The
TI radiates energy to the environment in a process that is
similar to black-body radiation; however, we demonstrate
that the radiation of hot photons to the environment is
strongly circularly polarized, and thus carries away an-
gular momentum. As a result, the TI itself experiences
a back-action torque which we show to be directly gov-

erned by the ac Hall conductivity. In particular, we in-
vestigate the universal nonequilibrium response of the TI
to the temperature difference with the environment. Fi-
nally, we show that the observation of this effect should
be comfortably within experimental reach.

Model.—The surface states of a TI are described by
the Dirac-like Hamiltonian (with ~ = 1) [20]

H = (−1)Lv (σxkx + σyky) + σz∆ , (1)

where L = 0, 1 denotes the TI’s top or bottom surfaces
parallel to the x-y plane, v is the Fermi velocity of the
surface states, and σi are the usual Pauli matrices. This
minimal Hamiltonian should suffice at room temperature
well below the bulk band gap. The first term in the
Hamiltonian describes the gapless modes in the Dirac
spectrum, while the last term (∆ > 0) arises because the
weak coupling to a ferromagnet breaks time-reversal sym-
metry [7, 21]. Such proximity-induced ferromagnetism
has been demonstrated experimentally [22–25]; see also
[26, 27]. We are ultimately interested in computing the
heat radiation from the TI out of thermal equilibrium
with the environment. To this end, we need to first char-
acterize the electronic response of the TI which dictates
its interaction with light. To determine the electronic
response, we can use the Kubo formula at finite temper-
ature to find the conductivity tensor [28]

σαβ(ω) =
∑
k

∑
nn′

fkn − fkn′

εkn − εkn′

〈kn|jα|kn′〉〈kn′|jβ |kn〉
ω + εkn − εkn′ + iγ

,

where the current is jα = ∂H/∂kα = evσα with α = x, y
the spatial coordinates along the surface. The quantum
numbers {k, n = c/v} denote the momentum and con-
duction/valence bands, respectively. The energy spec-
trum is given by εk c/v = ±

√
v2k2 + ∆2 and γ/2 is

the quasiparticle lifetime broadening. Also fkn = [1 +
exp (εkn/T )]−1 is the Fermi factor at a temperature T for
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band n; the chemical potential is set to zero. In the limit
of T → 0 and ω → 0, only the Hall conductivity is non-
vanishing, σxy = e2/(4π~). At finite frequencies, σxy(ω)
gives the ac Hall conductivity [13, 18]. A first inspection
of conductivity reveals that it is peaked at the interband
absorption threshold, ω = 2∆, which is the onset of the
resonant coupling of the valence and conduction bands.
These peaks are more pronounced at low temperatures,
but survive even at higher temperatures comparable to
or even larger that the gap size; see Fig. 1(a). For con-
venience, we shall choose units in which ~ = c = kB = 1
unless stated otherwise.

The TI is coupled to light in a peculiar fashion deter-
mined by its surface conductivity [13, 18, 19, 29]. For
a thin TI slab, we can ignore the bulk properties, which
have a much larger gap than the surface. We nevertheless
consider the slab to be sufficiently thick to prevent bot-
tom and top surface states from hybridizing; a thickness
& 10nm typically suffices [22–25]. With these assump-
tions, an incident wave is reflected by a single effective
surface whose conductivity is the sum of that from both
surfaces. As a first step, consider a normally incident
wave. Linearly polarized light is reflected off of the TI to
a superposition of the two linear polarizations. However,
right/left (+/-) circular polarization is reflected as the
same polarization with amplitude [13, 18]

R±(ω) ≈ −4π [σxx(ω)± iσxy(ω)] . (2)

Here, σxx/xy denote the conductivity of either top or bot-
tom surface, while an overall factor of 2 is due to the
contribution from both surfaces [13, 18]. The above re-
flection matrices are known to give rise to universal Kerr
and Faraday effects that characterize the phase of the
scattered wave [13–15, 19]. To determine radiation, we
should first characterize the absorptive properties of the
TI which are determined by the amplitude, rather than
the phase, of the scattering matrix. Indeed the scatter-
ing matrix shows an interesting feature: Near ω = 2∆,
right-circularly-polarized light (along the z direction) ex-
hibits resonant behavior, while left-circularly-polarized
light barely interacts with the TI. To illustrate this point,
we have plotted the real part of σ± = σxx±iσxy as a func-
tion of ω and at several temperatures in Fig. 1. Note that
Reσxx and Imσxy (the only ones entering Reσ±) give the
corresponding dissipative components of the conductivity
tensor. These will be particularly relevant as radiation,
accompanied by an increase of entropy, is intimately tied
to dissipation.

The resonant feature of only one polarization follows
from the strong spin-orbit coupling of the TI. In the
region near kx = ky = 0, the Hamiltonian is simply
H ≈ σz∆, and thus the top of the valence band is occu-
pied by spin-|↓〉 electrons, while the bottom of the con-
duction band corresponds to unoccupied spin-|↑〉 elec-
trons. Thus, at zero temperature, the spin can only in-
crease by one unit at the interband threshold. In other
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Figure 1: Dissipative components of conductivity in units
of e2/~ as a function of ω for several temperatures and
γ/∆ = 0.01. (a) The dissipative part of Hall conductivity
Imσxy exhibits a resonant feature at the interband threshold
ω = 2∆. This quantity directly determines angular momen-
tum radiation from the TI out of thermal equilibrium. (b,c)
The reflection matrices at normal incidence for the circular
polarizations are proportional to σ± = σxx ± iσxy. The ab-
sorption of light by the TI is determined by the dissipative
(real) parts of σ± as plotted in this figure. Only one polar-
ization is resonant at the threshold resulting in a strongly
polarized radiation; see text for the explanation.

words, only a photon with a positive angular momentum
along the z direction can be absorbed, in which case a
jump in the density of excited states at ω = 2∆ gives
rise to the resonant feature. At nonzero temperatures,
the resonant feature smoothes out, but nevertheless per-
sists.

Radiation of angular momentum.— Electromagnetic
waves carry energy, but they can also carry angular mo-
mentum. The angular momentum distribution of electro-
magnetic fields follows the standard definition of angular
momentum as L =

´
vol

x × S with x the position vec-

tor and S = 1
4πE × B the Poynting vector defining the

energy current (c = 1 and Gaussian units are chosen for
convenience). Much like how the Poynting vector quan-
tifies the flow of energy, change of angular momentum
can be related to the flux of a certain tensor. In a com-
pact four-vector notation, the conservation of energy can
be deduced from ∂νT

µν = 0 (summation over repeated
indices is assumed). This equation implies that energy
density T 00 = 1

8π (E2+B2) changes at a rate given by T i0,
which is simply the Poynting vector. Similarly, angular
momentum conservation follows from ∂λm

µνλ = 0, where
mµνλ = xµT νλ − xνTµλ is a rank-3 tensor [30]. The an-
gular momentum due to rotation in the i-j plane is given
by Lij =

´
x
mij0 with Roman indices denoting spatial

coordinates. The rate of angular momentum (density)
transfer along the l direction is then given by the ten-
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sor mijl. Specifically, the quantity Nz =
´
dxdymxyz =´

dxdy[xT yz − yT xz] determines the rate at which the
z-component of angular momentum is radiated along the
z direction. Identifying T ij as the Maxwell stress tensor,
we find Nz = 1

4π

´
dxdy [(x×E)zEz + (x×B)zBz]; see

Supplemental Material (SM) [31].
To study the TI out of thermal equilibrium with its

environment, we need a framework suited to far-from-
equilibrium situations. A powerful framework is provided
by the Keldysh formalism. Within this framework, the
dynamics is expressed on a closed time contour with two
branches along the forward and backward directions in
time. It is often convenient to work in the Keldysh basis
where each field finds two, classical and quantum, com-
ponents. We express the dynamics in terms of the gauge
field A in a gauge where the scalar potential is set to zero
[28]; the electric and magnetic fields are then described
as E = −∂tA and B = ∇×A. The path integral is then
a sum over both classical and quantum field configura-
tions Z =

´
DAclDAq exp

(
iSK [Acl,Aq]

)
with SK the

Keldysh action; Acl/q ≡ (Af ±Ab)/
√

2, where f, b refer
to the forward and backward branches of the closed con-
tour, respectively. For a thin TI, we can write the action
describing the interaction between the TI and the elec-
tromagnetic field vacuum in terms of circularly polarized
components A± ≡ (Ax ± iAy)/

√
2 as [32]

STI =
∑
s=±

ˆ
dω

2π

ˆ
TI

(
Acl∗s Aq∗s

)( 0 ΠA
s

ΠR
s ΠK

s

)(
Acls

Aqs

)
. (3)

Notice that STI is proportional to the fine structure
constant, α = e2/(~c) ≈ 1/137, therefore the TI is
weakly coupled to the environment. This equation de-
scribes the interaction of the gauge field with the TI
surface: ΠC

± indicate the current-current correlation ten-
sors (cross-correlations between the two circularly po-
larized basis states vanish due to the underlying sym-
metry); C = R,A,K correspond to the retarded, ad-
vanced, and Keldysh components, respectively. The com-
ponents of the current-current correlation functions can
be identified from the conductivity tensor. In general,
we have σαβ(ω) = (i/ω)ΠR

αβ(ω). The indices α, β de-
note the spatial directions, which can be converted to
the circular-polarization basis via ΠR

± = ΠR
xx ∓ iΠR

xy,

where we have implicitly used the relations ΠR
xx = ΠR

yy

and ΠR
xy = −ΠR

yx owing to the underlying symmetries
of the TI. The advanced and retarded components are
related to each other via time reversal operation as
ΠA
± = ΠR

±
∗
. To identify the Keldysh component of the

current-current correlation ΠK
± , note that the currents

on the surface are locally in equilibrium with a reser-
voir at temperature T , thus a local equilibrium condition
is dictated by the fluctuation-dissipation theorem [32]:
ΠK
± = 4 [n(ω, T ) + 1/2] Im ΠR

±; the function n(ω, T ) de-
notes the Bose-Einstein distribution at temperature T .
In particular, we note Im ΠR

+ − Im ΠR
− = 4ω Imσxy(ω)

with an additional factor of 2 included due to the con-
tribution of both top and bottom surfaces (see the SM
[31]). This relation will appear shortly in deriving the
angular momentum radiation from the TI.

To obtain the angular momentum radiation, we should
compute the expectation value 〈Nz〉, which characterizes
the total angular momentum flux along the z direction;
we consider the surface at a constant z > 0 but will
multiply the final result by a factor of 2 to account for
the radiation to both z → ±∞. We also note that this
radiation is absent in equilibrium and is directly a conse-
quence of the TI being out of thermal equilibrium with
the environment. Since the coupling of the TI to the
electromagnetic field in the environment is proportional
to α, one should expect the radiation to be of the same
order. To this order (i.e., within Born approximation),
we compute 〈Nz〉 ≈ i 〈NzSTI〉0, where the subscript 0
indicates that the average is computed over fluctuations
in free space in the absence of the TI. We obtain

〈Nz〉 =
2A

π

∑
±

ˆ ∞
0

dω n(ω, T )Im ΠR
± 〈〈Nz〉〉± , (4)

where the double bracket 〈〈 · 〉〉 is defined as follows:
Consider a bilinear operator O = XY where X
and Y are (different components of) the vector field
or derivatives thereof; we then define 〈〈XY 〉〉± ≡
Re
[
〈XclAq∗± 〉0〈Y cl∗Aq±〉0

]
, where the frequency (ω) de-

pendence is implicit. Each two-point correlation func-
tion then represents the (retarded or advanced) electro-
dynamic Green’s function in free space. A straightfor-
ward manipulation of Green’s functions yields a simple
expression 〈〈Nz〉〉± = ±ω/3. We note in passing that
the above equation can be easily extended to a situation
where the vacuum is at a nonzero temperature Tenv by
replacing n(ω, T ) by the difference n(ω, T ) − n(ω, Tenv);
clearly, there is no net radiation in thermal equilibrium
when T = Tenv. Putting these terms together and using
the previously noted relation Im Π+−Im Π− = 4ωImσxy,
we find the total angular momentum radiation as (restor-
ing units of ~ and c)

〈N tot
z 〉 = 2〈Nz〉 = −16~A

3πc3

ˆ ∞
0

dω
ω2

e~ω/T − 1
Im σxy .

(5)
An overall factor of 2 accounts for the total radiation to
both z → ±∞ as promised. More details of this calcula-
tion are reported in the SM [31]. With our conventions
(∆ > 0), we have Imσxy > 0 and thus the total angular
momentum carried away from the object is strictly nega-
tive. As a result, the TI itself absorbs an influx of positive
angular momentum per unit time; in other words, it ex-
periences a positive torque due to the emitted radiation.
The torque can also be understood by adopting a differ-
ent perspective where the object is heated up initially and
is then isolated from the thermal bath. Thermally popu-
lated phonons will then exchange energy with electrons;
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however, they can only do so if they also exchange an-
gular momentum since the excitation of an electron from
the valence to the conduction band requires an increase
of angular momentum. The excess of electronic angular
momentum is eventually radiated away, while, in the pro-
cess, phonons gain a net (negative) angular momentum.
A (positive) external torque should be exerted to main-
tain the TI at rest. Remarkably, Eq. (5) directly links
the radiation of angular momentum by the TI to its (ac)
Hall conductivity; cf. Fig. 1(a). Hall conductivity has
originally described the chiral electronic response to an
applied electric field, a phenomenon which also finds an
optical counterpart in the form of Kerr effect. However,
Eq. (5) offers a new interpretation where Hall conductiv-
ity governs a chiral mechanical response as a toque that
is exerted on the TI due to the back action of angular
momentum radiation.

Next we compute the total torque on the TI assuming
a relatively clean system when γ is vanishingly small. In
this limit, we find the dissipative part of Hall conduc-

tivity as Imσxy = (e2/~)Θ(ω − 2∆)∆tanh(~ω/4T )
4ω . This

quantity is zero for frequencies smaller than the band
gap, as expected. The torque, i.e. the back action of
angular momentum radiation, can be now evaluated as

Torque = −〈N tot
z 〉 =

~αA∆3

c2
g

(
T

~∆

)
, (6)

where g is a scaling function of T/(~∆) defined by
g(x) = 4/(3π)

´∞
2
dz z/[1 + exp( z2x )]2. This function

can be computed analytically in terms of polylogarithms
(see the SM [31]); however, we find it more illuminat-
ing to discuss its scaling properties. At high tempera-
tures T � ~∆, we find g(x) ∼ ax2 with the coefficient
a = 4(π2 − 12 log 2)/(9π) ≈ 0.22. Therefore, at high
temperatures, the torque scales quadratically with tem-
perature. At low temperatures, however, the radiation
is exponentially suppressed in the gap size ∼ e−2~∆/T as
the dissipative component of Hall conductivity is vanish-
ing within the band gap; see Fig. 2. It is worth mention-
ing that fluctuation-induced effects in equilibrium have
been studied extensively in the presence of topological
materials [33–39]. In particular, it is found that the force
between two TI slabs is proportional to α2. This scal-
ing can be contrasted with our result for nonequilibrium
torque ∼ α. In computing the torque, we have neglected
the edges of the TI. Due to their gapless nature, they can
give rise to a qualitatively different effect [40]. However,
we can imagine a scenario where only the bulk of the
material is heated, in which case our treatment remains
valid.

The effect reported in this work could also arise in
gyrotropic materials in the presence of a static magnetic
field which induces a nonzero σxy. However, a simple
estimate shows that the resulting circular polarization is
greatly suppressed at room temperature even for a large

1 2 3

1

2

3

Torque/(~αA∆3/c2)

T
~∆

∼ e−2~∆/T

∼ T 2

Figure 2: The torque acting on the TI or the negative angular
momentum radiated away as a function of temperature. At
low temperatures, the torque is exponentially small in the
gap size, while it rises sharply around T ∼ ∆ and increases
quadratically with T at high temperatures.

magnetic field ∼ 1 Tesla. On the other hand, strong spin-
orbit coupling in the TI gives rise to a highly circularly
polarized radiation even at temperatures larger than the
surface gap; see the SM. We nevertheless remark that this
effect is not unique to the TI, and can arise, for example,
in materials involving Rashba surface states [41].

To estimate the strength of the torque, we take the
surface gap ∆ ∼ 0.05 eV [26, 42, 43] and the size of the
TI slab in the mm range. To get a better sense of num-
bers, we compute the force that creates a given torque
if applied at the boundary of the system. A simple esti-
mate then shows that around T ∼ 2∆, for example, this
force is of the order of 1pN, which is comfortably within
the range of ultrasensitive force measurements [44]. Most
radiation is emitted around the frequency set by temper-
ature ω ∼ T which, in our example, corresponds to the
wavelength λ ∼ 1µm. This is large compared to the
TI thickness (d ∼ 10nm), which justifies our assumption
of a thin TI (λ � d). Another, perhaps more feasible,
route to detecting this effect is to measure the polariza-
tion of emitted photons. For example, we can collect light
emitted normal to the surface, convert circular into lin-
ear polarization with a quarter-wave plate, and guide it
through a polarizing beamsplitter to split horizontal and
vertical polarizations. We can then measure the intensity
at the two output ports of the polarizing beamsplitter.
This procedure can measure light emitted in a narrow
frequency band at a specific angle; however, it provides
a strong evidence for the polarization of the emitted ra-
diation.

Conclusion and outlook.—We have studied a thin TI
slab with the time reversal symmetry broken, and out
of thermal equilibrium with its environment. The mate-
rial is shown to emit thermal photons with a high degree
of circular polarization, thus experiencing a fluctuation-
driven torque. This work adds to the magnetoelectric
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and magneto-optic effects a magneto-mechanical compo-
nent. This effect arises in the absence of incident light
and is driven purely by fluctuations of the electromag-
netic field inside and vacuum fluctuations outside the ma-
terial. Extensions of this work to other materials such as
Weyl semimetals [45, 46] and Rashba surface states [41]
are worthwhile. An interesting future direction is to fully
investigate the gapless edge states out of thermal equi-
librium with the environment.

We thank Mark Dykman, Peng Wei, and Liang Wu
for comments on the manuscript. M.M. acknowledges
support from NSF under Grant No. DMR-1912799
and start-up funding from Michigan State University.
A.V.G. acknowledges support by AFOSR, ARO, the NSF
PFCQC program, the DoE BES QIS program (award
No. DE-SC0019449), the DoE ASCR Quantum Testbed
Pathfinder program (award No. DE-SC0019040), ARL
CDQI, NSF PFC at JQI, and ARO MURI. J.S. is sup-
ported by NSF-DMR-1555135 (CAREER), JQI-NSF-
PFC (PHY1430094) and the Sloan research fellowship.

∗ Corresponding author: maghrebi@pa.msu.edu
[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[2] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[3] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306

(2007).
[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[5] M. Z. Hasan and J. E. Moore, Annu. Rev. Condens. Mat-

ter Phys. 2, 55 (2011).
[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).
[7] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B

78, 195424 (2008).
[8] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev.

Lett. 102, 146805 (2009).
[9] A. B. Sushkov, G. S. Jenkins, D. C. Schmadel, N. P.

Butch, J. Paglione, and H. D. Drew, Phys. Rev. B 82,
125110 (2010).

[10] G. S. Jenkins, A. B. Sushkov, D. C. Schmadel, N. P.
Butch, P. Syers, J. Paglione, and H. D. Drew, Phys. Rev.
B 82, 125120 (2010).

[11] J. N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko,
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