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We theoretically analyze superradiant emission of light from an ultracold gas of bosonic atoms
confined in a bad cavity. A metastable dipolar transition of the atoms couples to the cavity field
and is incoherently pumped, the mechanical effects of cavity-atom interactions tend to order the
atoms in the periodic cavity potential. By means of a mean-field model we determine the conditions
on the cavity parameters and pump rate that lead to the buildup of a stable macroscopic dipole
emitting coherent light. We show that this occurs when the superradiant decay rate and the pump
rate exceed threshold values of the order of the photon recoil energy. Above these thresholds
superradiant emission is accompanied by the formation of stable matter-wave gratings that diffract
the emitted photons. Outside of this regime, instead, the optomechanical coupling can give rise to
dephasing or chaos, for which the emitted light is respectively incoherent or chaotic. These behaviors
exhibit the features of a dynamical phase transitions and emerge from the interplay between global
optomechanical interactions, quantum fluctuations, and noise.

Superradiance describes the collective emission of light
by an ensemble of dipoles. It is a quantum interference
phenomenon in the emission amplitudes [1–3] and is ac-
companied by a macroscopic coherence within the ensem-
ble [1, 2]. In its original formulation, Dicke considered N
dipoles confined within their resonance wavelength and
showed that their spontaneous decay can be enhanced by
the factor N [2].

Quantum interference is typically lost due to fluctua-
tions in the amplitude and in the phase of the dipole-field
coupling. These fluctuations can be suppressed by cool-
ing the atomic medium to ultralow temperatures [4, 5]
and/or by subwavelength localization of the scatterers
in an ordered array [6–13]. When, in contrast, the co-
herence length of the atomic wave function extends over
several wavelengths, superradiant scattering of laser light
can manifest through the formation of matter-wave grat-
ings [4, 5, 14–16]. In free-space, superradiant gain can be
understood as the diffraction of photons from the density
grating of the recoiling atoms, which acts as an amplify-
ing medium [4, 15]. Within an optical resonator, these
dynamics can give rise to lasing [17–20] and be cast in
terms of synchronization models [19, 21].

In this Letter we analyze the interplay between super-
radiant emission and quantum fluctuations due to the
recoiling atoms, when the atoms’ dipolar transitions cou-
ple to the mode of a lossy standing-wave resonator. In
contrast to Refs. [4, 5, 14–16], here the atoms are in-
coherently pumped, as shown in Fig. 1, and therefore
no coherence is established by the process pumping en-
ergy into the system. The system parameters are in the
regime where stationary superradiant emission (SSR) is
predicted [22–27]: In a homogeneous medium, SSR con-
sists in the buildup of a stable macroscopic dipole, that
acts as a stationary source of coherent light. The dy-

FIG. 1. (a) An atomic gas initially forms a Bose-Einstein
condensate and is confined within a standing-wave resonator,
which emits photons at rate κ. (b) The metastable atomic
transition |g〉 → |e〉 couples to the cavity mode and is inco-
herently pumped at rate w. After the first superradiant decay
(c) the atoms form density gratings. (d) The emitted field
X(t) (here in the reference frame of the atomic frequency)
becomes coherent for sufficiently large values of w, such that
one grating is mechanically stable.

namical properties can be understood in terms of a time-
periodic state at the asymptotics of the driven-incoherent
dynamics [28–32], whose frequency is determined by the
incoherent pump rate w [28]. In a homogeneous medium
the transition from normal to SSR fluorescence is con-
trolled by w when the superradiant decay rate is larger
than the rates characterizing other incoherent processes.
Here, we show that in the presence of the optomechan-
ical coupling with the external degrees of freedom SSR
corresponds to spatio-temporal long-range order and is
reached when the characteristic rates exceed the recoil
frequency, scaling the mechanical energy exchanged with
radiation. When instead the recoil frequency becomes
comparable with the pump or the superradiant decay
rate, then the superradiant emitted light can become ei-
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ther chaotic or incoherent. The chaotic phase, in partic-
ular, characterizes the asymptotic phase of an incoherent
dynamics, it emerges from the interplay between quan-
tum fluctuations, noise, and global interactions mediated
by the cavity field, and is thus qualitatively different
from chaos reported in quantum dynamics of Hamilto-
nian global-range interacting systems [33, 34].

Consider a gas of N atomic bosons with mass m that
are confined along the axis of a standing-wave resonator.
The atoms do not interact directly; their relevant elec-
tronic degrees of freedom form a metastable dipole with
excited state |e〉 and ground state |g〉. The dipoles
are incoherently pumped at rate w and strongly cou-
pled to a cavity mode with wave number k and loss
rate κ. The evolution of the density matrix %̂ for the
cavity field and the atoms’ internal and external degrees
of freedom is given by the Born-Markov master equa-
tion ∂t%̂ = [Ĥ0 + Ĥc, %̂]/(i~) + w

∑
j L[σ̂†j ]%̂ + κL[â]%̂.

Here, Ĥ0 =
∑N
j=1 p̂

2
j/(2m) is the total kinetic energy,

with p̂j the momentum of each atom j; Ĥc = ~∆â†â +

~gN(â†X̂/2 + H.c.) describes the reversible evolution
due to the interaction with the resonator, with â and
â† the annihilation and creation operators of a cavity
photon, and ∆ the cavity detuning from the atomic
transition frequency. The field couples with strength g
to the collective dipole X̂ =

∑
j σ̂j cos(kx̂j)/N , where

σ̂j = |g〉j〈e| and the sum is weighted by the value of
the cavity standing-wave mode cos(kx) at the positions
x̂j . The Lindbladians describe the incoherent dynamics

and read L[Ô]%̂ = −
(
Ô†Ô%̂+ %̂Ô†Ô

)
/2 + Ô%̂Ô†. For

N � 1 the quantum dynamics is numerically intractable
due to the adverse Liouville space scaling. This dynam-
ics can be cast in terms of long-range dipolar and op-
tomechanical interactions in the atoms’ Hilbert space
when κ and ∆ are the largest rates. In this regime
the atomic transition is radiatively broadened by the
coupling with the cavity, its linewidth at an antinode
is Γc = g2κ/(κ2 + 4∆2). Then, the cavity field fol-
lows adiabatically the atomic motion, â ∝ X̂ [35, 36],
while shot-noise fluctuations are negligible [37]. The
atoms density matrix ρ̂N then obeys the master equation
∂tρ̂N = [Ĥeff , ρ̂N ]/(i~)+w

∑
j L[σ̂†j ]ρ̂N+ΛL[X̂]ρ̂N . Here,

Ĥeff = Ĥ0 + V̂ , where V̂ = −~NΛ(∆/κ)X̂†X̂ describes
the global interactions mediated by cavity photons. Now
the incoherent processes are the incoherent pump at
rate w and the superradiant decay with rate Λ = NΓc.
We neglected retardation effects of the cavity field, which
is justified by the choice of large κ. We also neglected
single-atom radiative decay at rate Γc, assuming time
scales t < 1/Γc and N � 1. Since 1/Γc = N/Λ, this
time scale can be stretched to t → ∞ in a thermody-
namic limit N → ∞ where Λ is kept constant [33, 36].
Under these assumptions we finally obtain the mean-field
master equation for the single-particle density matrix ρ̂1

(assuming that ρ̂N is a product state at t = 0):

∂tρ̂1 = [Ĥmf{ρ̂1}, ρ̂1]/(i~) + wL[σ̂†]ρ̂1 , (1)

where ρ̂1 = TrN−1{ρ̂N} is obtained by tracing out
N − 1 atoms. Now the incoherent evolution is due en-
tirely to the incoherent pump and the interactions with
the resonator are given by the mean-field Hamiltonian:

Ĥmf =
p̂2

2m
− ~Λ

2 sinχ

(
eiχX{ρ̂1}σ̂† + H.c.

)
cos(kx̂) , (2)

with tan(χ) = κ/(2∆). Here, the Rabi frequency is pro-
portional to the mean-field order parameter X{ρ̂1} =
Tr{σ̂ cos(kx̂)ρ̂1}, and thus depends on the global macro-
scopic dipole. Note that X generates the intracavity
field and within the mean-field treatment determines
the field’s coherence properties. By neglecting the dif-
fusion due to the incoherent pump, Eq. (1) can be re-
duced to a Vlasov equation with a potential that de-
pends on the macroscopic dipole of the initial state, and
whose stable solutions are metastable states of the out-
of-equilibrium dynamics [39, 41]. In the following we

analyze the stability of a thermal initial state ρ̂
(0)
1 =

|e〉〈e| ⊗ exp(−βp̂2/2m)/Z, with inverse temperature β,

partition function Z. Here, X{ρ̂(0)
1 } = 0.

FIG. 2. Contour plot of the rate γ of the first superradiant
emission as a function of the incoherent pump rate w (in units
of Λ) and of the atomic gas temperature 1/β (in units of

β̃−1 = ~Λ2/(2ωR)). The solid line separates the regime in
which the atoms undergo superradiant decay from the one
where thermal fluctuations suppress superradiance (stripes).

The short-time dynamics is determined by means of
a stability analysis as a function of w and β, see Sup-
plemental Material (SM) [40] for details. No superra-

diant emission is found when X{ρ̂(0)
1 } = 0 is stable to

small fluctuations. When instead exponentially increases
as X ∼ exp(γt) with Re(γ) > 0, then the system un-
dergoes superradiant decay with Re(γ). Figure 2 shows
the contour plot of the exponent Re(γ) as a function
of both w and β. We find a threshold temperature
kBTc ≈ 0.1~Λ2/(2ωR), where ωR = ~k2/(2m) is the re-
coil frequency. For T > Tc thermal fluctuations suppress
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superradiance. For T < Tc superradiance is found for a
finite interval of the pump rate 0 < w ≤ wmax(β), which
increases with the ratio η = β/β̄ = Tc/T . For η → ∞
the upper bound is wmax = Λ/2, that coincides with the
value found for a homogeneous medium [36]. We now fo-
cus on the regime where Λ is of the order of ωR, so that
the threshold temperature Tc can be several µK.

FIG. 3. Phase diagram in the w/ωR–Λ/ωR plane when the
atoms initially form a Bose-Einstein condensate at T = 0.
The phases are labeled by the coherence properties of the
emitted light. The emitted field is given by X(t) and is ob-
tained by solving Eq. (1) at the asymptotic dynamics, see [40].
Path A (Path B) shows the parameters of Fig. 4 (Fig. 5). In
the striped region superradiant decay is suppressed (corre-
sponding to the region at T = 0 and w > Λ/2 in Fig. 2).

We now study the dynamics of an ensemble of atoms in
the zero-temperature limit, when the atoms initially form
a Bose-Einstein condensate (BEC). We neglect onsite in-
teractions and analyze the dynamics of the external de-
grees of freedom on the closed family of momentum states
|Ψ0〉 = |0〉 (the BEC) and |Ψn〉 = (|n~k〉+ | − n~k〉)/

√
2

(n = 1, 2, . . .). These states are coupled by absorption
and emission of cavity photons; their energy Ekin,n =
n2~ωR is an integer multiple of ωR. The asymptotic be-
havior of Eq. (1) is strictly defined in the thermodynamic
limit and is determined by means of a recursive procedure
[40]. In Fig. 3 we report the coherence properties of the
emitted light in a w−Λ phase diagram. We first note the
normal (striped) phase with w > Λ/2, where there is no
superradiant emission. The transition from normal to su-
perradiant phase (without optomechanical coupling) has
been discussed in the literature [22–24, 28, 43]. Within
the regime where SSR is expected, we now find that
the optomechanical coupling gives rise to three phases
which we denote by (i) incoherent, (ii) coherent, and (iii)
chaotic, corresponding to the coherence properties of the
emitted light. In the incoherent phase only the solution
with X = 0 is stable and collective effects are suppressed.
In the coherent phase there is one stable solution with
X 6= 0. As visible in the phase diagram, the condition
for the appearance of this phase is that the superradiant
linewidth exceeds a minimum value determined by the
recoil frequency, Λ > Λc with Λc ∼ 6ωR. Finally, the

chaotic phase is found for Λ > Λc, when the pump rate
is below a threshold wc(Λ). Here, both solutions with
X 6= 0 and X = 0 are unstable.

We verified these predictions by numerically integrat-
ing Eq. (1) with the initial state ρ1(0) at T = 0 on the
grid of momentum states p = 0,±~k, . . . ,±15~k. Fig-
ure 4(a) displays |X(t)| for different values of Λ along
Path A of Fig. 3, where a direct transition occurs from
an incoherent to a coherent (SSR) phase. For all val-
ues the intracavity field |X(t)| first grows exponentially,
and subsequently reaches a maximum at a time scale
τc ∼ 1/Λ. After this time scale: (i) For Λ < Λc the
intracavity field |X(t)| decays to zero. This dynamics is
accompanied by the formation of a statistical mixture of
states |e,Ψ2n〉 and |e,Ψ2n+1〉, which dephases the macro-
scopic dipole and leads to suppression of superradiant
emission. (ii) For Λ ∼ Λc the field undergoes fast oscil-
lations and then slowly decays to zero. (iii) For Λ > Λc
the field oscillates about a finite asymptotic value and
the atoms form a stable spatial pattern. This dynamics
exhibits the general features of a dynamical phase tran-
sition, which occurs after the first superradiant emission
at t ∼ τc. After τc the macroscopic dipole X decays to
zero or oscillates about a finite metastable value. We
denote the asymptotic value of the order parameter by
Xst(Λ), which we determine by numerical evolution of
|X(t)|, taking |Xst(Λ)| = |X(tf)|, where at tf the dipole
|X(t)| has reached a constant value. We compare this
result with the asymptotic solution ρ̂st of Eq. (1), using
an iterative procedure based on a seed X > 0 (as for
determining the phase diagram of Fig. 3 [40]). Along
Path A this iterative procedure always converges to ei-
ther Xst = 0 for Λ < Λc and Xst > 0 for Λ > Λc. As is
visible in Fig. 4(b), the predictions obtained by numer-
ical integration (circles) and by the iterative procedure
(dashed line) qualitatively agree and exhibit the features
of a second-order phase transition. Figure 4(c) displays
the minimum eigenvalue of the partial transpose of ρ̂st.
Its behavior shows that at the buildup of SSR internal
and external degrees of freedom become entangled [40].

The transition separating the coherent from the
chaotic phase occurs for Λ > Λc as a function of w:
The properties of the emitted light dramatically depend
on whether w is smaller or larger than a critical value
wc(Λ). Figure 5(a) displays the numerical results for the
real and the imaginary part of X(t) for a fixed time in-
terval for (i) w < wc, where the dynamics is chaotic,
(ii) w ' wc where the dynamics is mainly character-
ized by the appearance of two subharmonics, and (iii) for
w > wc, where the dynamics is evidently coherent. The
spectrum of the emitted light is displayed in Fig. 5(b)
as a function of w and for the parameters of Path B of
Fig. 3. The transition from regular oscillations to chaos
occurs at a value wc where two sidebands appear. We
analytically determine wc by means of a stability anal-
ysis, see [40]. This analysis also delivers the frequencies
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FIG. 4. The incoherent-coherent transition for the parame-
ters of Path A of Fig. 3 (w = Λ/4 and ∆ = κ/2). Subplot (a),
from left to right: Dynamics of X for Λ = 4, 6.5, 9ωR. (b) The
asymptotic value for the mean-field order parameter |X(tf)|
and (c) the minimum eigenvalue λmin of the partial transpose
of the asymptotic density matrix, signalling entanglement be-
tween external and internal degrees of freedom, as a function
of Λ (in units of ωR). Black circles: Numerical results at time
tf = 4 × 104ω−1

R ; Dashed lines: Steady-state values from the
iterative solution of ∂tρ1 = 0, Eq. (1).

of the sideband at w = wc and the Lyapunov exponent
γL = Re(γ). As is visible in Fig. 5(c), γL changes sign
at w = wc and is positive for w < wc. The trajectory
of subplot (a)-(i) corresponds to the value of w where
the spectrum is dense: In this parameter regime the sta-
bility analysis predicts the transition from chaotic to in-
coherent dynamics. Numerical simulations show that for
w < wc the density grating becomes unstable and the sys-
tem jumps back and forth between a prevailing occupa-
tion of the set of states corresponding to an even grating,
{|e,Ψ2n〉, |g,Ψ2n+1〉, n = 0, 1, 2, ...}, and of the ones cor-
responding to an odd grating, {|e,Ψ2n+1〉, |g,Ψ2n〉, n =
0, 1, 2, ...}. While the states within each set are coupled
by coherent processes, the two sets are only coupled to
each other by the incoherent pump: Thus, for w < wc
the long-range optomechanical interactions tend to form
a grating, which locks the phase of the field, while the
incoherent pump induces quantum jumps between differ-
ent gratings. In the coherent phase internal and external
degrees of freedom are entangled as soon as w > wc (see
SM also for the analysis of the chaotic phase [40]). We re-
mark that the spin-light dynamics in the coherent phase
can be understood in terms of the time crystal studied
in Ref. [28]. Our analysis shows that the optomechani-
cal coupling gives rise to a spatial pattern which stabi-
lizes the asymptotic time-periodic state. The parameter
regime, howewer, is smaller than the one predicted in

Ref. [28]: the interplay between optomechanical dynam-
ics, noise, and quantum fluctuations gives rise to new
time-periodic or even time-aperiodic states.

FIG. 5. The chaotic-coherent transition for the parameters
of Path B of Fig. 3 (Λ = 15ωR and ∆ = κ/2). (a) From left
to right: Real and imaginary part of X for w = 1, 1.5, 2.5ωR

(here for the time interval t ∈ [9.8 × 103, 104]/ωR). (b) Con-
tour plot of the spectrum of the emitted light F (ω) (arbitrary
units) as a function of w and of the frequency ω (in units of

ωR). Here, F (ω) ∝
∣∣∣∫ tend

0
eiωtX(t)dt

∣∣∣ is found by integrat-

ing Eq. (1) until tend = 104ω−1
R . (c) The real (solid) and

imaginary part (dashed) of the exponent γ (in units of ωR)
giving the stability of the stationary solutions. The verti-
cal dashed lines indicate the critical pumping strength wc(Λ),
where Re(γ) changes sign and the sidebands appear, the cir-
cles mark the corresponding frequencies.

The phase diagram can be observed by tuning the su-
perradiant linewidth and the pump rate across values of
the order of the recoil frequency ωR, the phases are sig-
naled by the first-order correlation function of the emit-
ted light. These dynamics can be realized when the res-
onator linewidth κ exceeds by several orders of magni-
tude ωR and when other incoherent processes can be dis-
carded over the time scales where the dynamical phase
transition occurs. Specifically, the spontaneous decay of
the dipolar transition and the particle-particle collision
rate shall be orders of magnitude smaller than the recoil
frequency, which can be realized using a Raman transi-
tion between metastable hyperfine states and low densi-
ties, as for instance in Refs. [25, 44, 45].
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