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We consider simulating an n-qubit Hamiltonian with nearest-neighbor interactions evolving for
time t on a quantum computer. We show that this simulation has gate complexity (nt)1+o(1) using
product formulas, a straightforward approach that has been demonstrated by several experimental
groups. While it is reasonable to expect this complexity—in particular, this was claimed without
rigorous justification by Jordan, Lee, and Preskill—we are not aware of a straightforward proof. Our
approach is based on an analysis of the local error structure of product formulas, as introduced by
Descombes and Thalhammer and significantly simplified here. We prove error bounds for canonical
product formulas, which include well-known constructions such as the Lie-Trotter-Suzuki formulas.
We also develop a local error representation for time-dependent Hamiltonian simulation, and we
discuss generalizations to periodic boundary conditions, constant-range interactions, and higher
dimensions. Combined with a previous lower bound, our result implies that product formulas can
simulate lattice Hamiltonians with nearly optimal gate complexity.

Simulating the Hamiltonian dynamics of a quantum
system is one of the most natural applications of
a quantum computer. Indeed, the idea of quan-
tum computation, as suggested by Feynman [1] and
others, was primarily motivated by the problem of
quantum simulation. Quantum computers can sim-
ulate a variety of physical systems, including quan-
tum chemistry [2–5], quantum field theory [6, 7], and
many-body physics [8], and could ultimately lead to
practical applications such as designing new phar-
maceuticals, catalysts, and materials [9, 10].

A natural class of Hamiltonians that includes
many physically reasonable systems is the class of
lattice Hamiltonians [6, 11–13]. Lattice Hamilto-
nians arise in many models of condensed matter
physics, including systems of spins (e.g., Ising, XY,
and Heisenberg models; Kitaev’s toric code and hon-
eycomb models; etc.), fermions (e.g., the Hubbard
model and the t-J model), and bosons (e.g., the
Bose-Hubbard model). Note that fermion mod-
els can be simulated using local interactions among
qubits by using a mapping to qubits that preserves
locality [14]. Digital simulations of quantum field
theory also typically involve approximation by a lat-
tice system [6].

For simplicity, we mainly focus on nearest-
neighbor lattice systems in one dimension (although
we discuss generalizations to other lattice models
as well). In this case, n qubits are laid out on a
one-dimensional lattice and the Hamiltonian only in-
volves nearest-neighbor interactions. Specifically, a
HamiltonianH is a lattice Hamiltonian if it acts on n
qubits and can be decomposed as H =

∑n−1
j=1 Hj,j+1,

where each Hj,j+1 is a Hermitian operator that acts
nontrivially only on qubits j and j + 1. We assume

that maxj ‖Hj,j+1‖ ≤ 1, for otherwise we evolve un-
der the normalized Hamiltonian H/maxj ‖Hj,j+1‖
for time maxj ‖Hj,j+1‖ t.

Lloyd’s original proposal for an explicit quan-
tum simulation algorithm [15] uses the Lie-Trotter
product formula. Subsequent work achieves bet-
ter asymptotic complexity [16] using higher-order
Suzuki formulas [17]. We refer to all such formu-
las as product formulas. The product-formula al-
gorithm is straightforward yet surprisingly efficient
for quantum simulation. Indeed, it can conserve
certain symmetries of the dynamics [18] and ap-
pears to be advantageous for various practical sys-
tems [2, 19, 20]. Although recent simulation al-
gorithms have better asymptotic complexities [21–
30], the product-formula approach remains a natu-
ral choice for experimental simulations [31–33] due
to its simplicity and the fact that it does not require
any ancilla qubits. Its study has also illuminated
areas beyond quantum computing [34].

One of the main challenges in quantum simula-
tion is to analyze the gate complexity of simulation
algorithms. Explicit gate counts are especially de-
sirable for near-term simulation because early quan-
tum computers will only be able to reliably perform
a limited number of gates. While existing analysis
appears to be tight for recent simulation algorithms,
the product-formula bound can be loose by several
orders of magnitude [2, 8, 19, 20]. This dramatic
gap makes it hard to identify the fastest simulation
algorithm and to find optimized implementations for
near-term applications [19].

Product formulas can simulate a lattice system
with fixed accuracy with gate complexity O

(
n(nt)2

)
in the first-order case and O

(
n(nt)1+

1
2k

)
in the
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(2k)th-order case. However, it is natural to ex-
pect a more efficient simulation. Roughly speak-
ing, a system simulates its own evolution for con-
stant time using only constant circuit depth—and
hence an extensive number of gates—so one might
expect a true simulation complexity of O(nt). In-
deed, Jordan, Lee, and Preskill claimed that prod-
uct formulas can simulate an n-qubit lattice system
with (nt)1+o(1) gates [6], but they did not provide
rigorous justification and it is unclear how to for-
malize their argument. Subsequent work improves
the analysis of the product-formula algorithm using
information about commutation among terms in the
Hamiltonian [3, 4, 19, 35], the distribution of norms
of terms [36], and by randomizing the ordering of
terms [37, 38]. However, none of these improvements
can achieve the claimed gate complexity (nt)1+o(1)

for lattice simulation.

Main result. Let H =
∑n−1
j=1 Hj,j+1 be an n-qubit

lattice Hamiltonian. We order the terms in the even-
odd pattern H1,2, H3,4, . . . ,H2,3, H4,5, . . . obtaining
the first-order product formula

S1(t) : =

n
2−1∏
k=1

e−itH2k,2k+1

n
2∏

k=1

e−itH2k−1,2k

= e−itHevene−itHodd

(1)

and the (2k)th-order product formulas

S2(t) := e−i
t
2Hodde−itHevene−i

t
2Hodd

S2k(t) := S2k−2(pkt)
2 S2k−2((1− 4pk)t) S2k−2(pkt)

2

(2)
with pk := 1/(4 − 41/(2k−1)). Our main result is
an asymptotic upper bound on the product-formula
error ∥∥S1(t)− e−itH

∥∥ = O(nt2)∥∥S2k(t)− e−itH
∥∥ = O(nt2k+1),

(3)

where ‖·‖ denotes the spectral norm.
The above error bound works well only for very

small t. To simulate for a longer time, we divide
the entire evolution into r segments, and within
each segment, we simulate using product formu-
las. To achieve accuracy ε, it suffices to choose
r1 = O(nt2/ε) for the first-order formula and

r2k = O
(
t(nt/ε)

1
2k

)
for the (2k)th-order formula.

Equivalently, we have gate complexity O
(
(nt)2

)
and

O
(
(nt)1+

1
2k

)
for the first- and (2k)th-order algo-

rithm, assuming that we simulate with constant ac-
curacy.

For any δ > 0, we choose an integer k sufficiently
large so that 1

2k ≤ δ, upper-bounding the gate com-

plexity as O
(
(nt)1+

1
2k

)
= O

(
(nt)1+δ

)
. This proves

that the product-formula algorithm has asymptotic
gate complexity (nt)1+o(1). Combining with the

lower bound of Ω̃(nt) established in [12], we have
showed that product formulas can simulate a lattice
Hamiltonian with nearly optimal gate complexity.

Applications. As an immediate application, our
result gives a rigorous proof of the Jordan-Lee-
Preskill claim about the complexity of simulating
quantum field theory [6]. Recent works have ana-
lyzed the gate complexity of other quantum field the-
ory simulations [39], including digital simulation of
gauge theories [40]. The lattice Hamiltonians there
have similar locality, so our analysis still applies. We
expect our technique can be generalized to speed up
the simulation of other systems, such as electronic
structure Hamiltonians [9], power-law decaying in-
teractions [41], exponentially decaying interactions
[42], and clustered Hamiltonians [43], but we leave a
thorough study of such generalizations as a subject
for future work [44].

To simulate an n-qubit lattice Hamiltonian for
time t, our algorithm has circuit depth no(1)t1+o(1).
As a side application, our analysis gives a tensor net-
work representation of lattice systems with bond di-

mension 2n
o(1)t1+o(1) , using the counting argument of

[45]. This exponentially improves a recent construc-
tion of [46, Lemma 17] which uses only the first-order
Trotter decomposition.

We work primarily with an idealized setting where
quantum operations can be performed faithfully.
However, in realistic experiments, quantum gates
will be imperfectly implemented. For such a case,
Reference [47] estimates the simulation accuracy as
α
r2k

+βr in diamond-norm distance [48, 49], where α
captures the algorithmic error of product formulas
and β captures gate errors. This leads to an optimal

number of segments r =
(
α2k/β

) 1
2k+1 , which can

be improved by our result. Specifically, the original
analysis in [16] implies αorig = O

(
(nt)2k+1

)
. This

has been improved by subsequent work [19, 37], al-
though none of these improvements achieves linear
scaling in n. In contrast, the analysis of this letter
gives αopt = O

(
nt2k+1

)
, improving the performance

as a function of n even in the presence of noise.

Our main goal is to establish the gate complex-
ity of (nt)1+o(1) for the product-formula algorithm.
However, our analysis is not only nearly optimal in
the asymptotic regime but also appears to be much
tighter in practice. For concreteness, we numerically
implement and optimize our fourth-order bound,
and compare it with previous product-formula anal-
ysis, for simulation of a one-dimensional Heisen-
berg model with a random magnetic field with open
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FIG. 1: Comparison of r for different product-formula
bounds for the Heisenberg model (see [50, Section VI]

for detailed parameters). Error bars are omitted as
they are negligibly small on the plot. Straight lines

show power-law fits to the data.

boundary conditions [50, Eq.(98)] (see Figure 1). We
find that the scaling of our bound matches the em-
pirical performance and the constant prefactor is off
by only one order of magnitude, a significant im-
provement over previous rigorous bounds [19]. Fur-
ther improvements of our bound are possible by op-
timizing its numerical implementation; we leave a
detailed study for future work [44].

Analysis of the first-order algorithm. The key
technique behind our approach is an integral repre-
sentation of the error S (t)− e−itH that we develop
based on Descombes and Thalhammer’s local error
analysis of product formulas [51]. In the local error
representation, the integrand is expressed as a linear
combination of nested commutators, where the num-
bers of summands and nesting layers are both inde-
pendent of n and t. We use this representation to
get the correct asymptotic gate count as a function
of n and t. In contrast, the conventional approach
uses the Baker-Campbell-Hausdorff formula or naive
Taylor expansion, which requires the manipulation
of infinite series and appears to be technically chal-
lenging to analyze [52] [50, Section I].

To illustrate the proof idea, we show how to ob-
tain

∥∥S1(t)− e−itH
∥∥ = O(nt2) for the first-order

formula. We differentiate S1(t) and obtain

S ′1(t) = −iHS1(t) +
[
e−itHeven , −iHodd

]
e−itHodd .

(4)
Using the variation-of-constants formula [51] [53,
Theorem 4.9] with initial condition S1(0) = I,
we find an integral representation of the product-
formula error S1(t)− e−itH as∫ t

0

dτ1 e
−i(t−τ1)H

[
e−iτ1Heven , −iHodd

]
e−iτ1Hodd .

(5)

We repeat this procedure to analyze the commutator[
e−iτ1Heven , −iHodd

]
, obtaining an upper bound on

the spectral-norm error∥∥S1(t)− e−itH
∥∥ ≤ ∫ t

0

dτ1

∫ τ1

0

dτ2
∥∥[Heven, Hodd

]∥∥ .
(6)

We expand Hodd and Heven according to their
definitions. Fixing an arbitrary term H2k−1,2k in
Hodd, the commutator

[
H2l,2l+1, H2k−1,2k

]
is non-

zero only when l ∈ {k − 1, k}. We thus find that

[
Heven, Hodd

]
=

n
2∑

k=1

[
H2k−2,2k−1 +H2k,2k+1, H2k−1,2k

]
.

(7)
Using the triangle inequality, we have∥∥S1(t)− e−itH

∥∥ = O(nt2), which proves the
claim (3) for the first-order case.

Ordering robustness. Our above bound works
when terms of the lattice Hamiltonian are ordered
in the even-odd pattern. However, this choice is not
necessary: the first-order algorithm has the same
asymptotic error bound with respect to any ordering
of the lattice terms.

Our analysis relies on an error bound for swapping
lattice terms:∥∥[e−itHk,k+1 , e−itHl,l+1

]∥∥ ≤ 2t2 (8)

if |k−l| = 1 and 0 otherwise. In words, we may swap
two exponentials e−itHk,k+1 and e−itHl,l+1 without
error unless their supports overlap, in which case
the error is O(t2).

Let H =
∑n−1
j=1 Hj,j+1 be a lattice Hamilto-

nian. We now simulate it using the first-order for-
mula, but allow terms to be ordered arbitrarily as∏n−1
j=1 e

−itHσ(j),σ(j)+1 , where σ ∈ Sn−1 is a permuta-
tion on the n− 1 elements {1, . . . , n− 1}. Then the

spectral-norm error
∥∥∥∏n−1

j=1 e
−itHσ(j),σ(j)+1 − e−itH

∥∥∥
is upper bounded by∥∥∥∥∥∥

n−1∏
j=1

e−itHσ(j),σ(j)+1 − e−itHevene−itHodd

∥∥∥∥∥∥
+
∥∥e−itHevene−itHodd − e−itH

∥∥ .
(9)

The second term is upper bounded by O(nt2). For

the first term, we transform
∏n−1
j=1 e

−itHσ(j),σ(j)+1

into
∏n

2−1
k=1 e

−itH2k,2k+1
∏n

2

k=1 e
−itH2k−1,2k by swap-

ping neighboring exponentials. Every time two ex-
ponentials are swapped, we use (8) to bound the
error. The total number of swaps of exponentials
e−itHk,k+1 and e−itHl,l+1 with |k − l| = 1 is at most
2n, incurring error 4nt2 = O(nt2).
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We have therefore obtained the same asymptotic
error bound for an arbitrary ordering of the Hamil-
tonian terms. We call this phenomenon ordering ro-
bustness. Our analysis shows that the first-order al-
gorithm is ordering-robust. Whether a similar prop-
erty holds for a general higher-order formula remains
an open question.

We also numerically compare the first-order algo-
rithm with the even-odd ordering and the ordering
of [19]. Although they have the same asymptotic
error bound, in practice the even-odd ordering has
smaller exponent and constant prefactor. Details
can be found in [50, Section VI].

Analysis of higher-order algorithms. Analyz-
ing higher-order product formulas is more challeng-
ing. To this end, we represent them in a canonical
form, which is easy to manipulate and encompasses
well-known constructions such as the Lie-Trotter-
Suzuki formulas S1(t), S2k(t) as special cases. We
then use the variation-of-constants formula to write

S2k(t)− e−itH =

∫ t

0

e−i(t−τ)HS2k(τ)T (τ)dτ,

(10)

where T (t) = S †2k(t)
[
d
dtS2k(t)− (−iH)S2k(t)

]
. As

a (2k)th-order formula, S2k(t) satisfies an order con-
dition S2k(t) = e−itH +O(t2k+1), which further im-
plies by Taylor’s theorem

T (τ) = 2k

∫ 1

0

dx (1−x)2k−1T (2k)(xτ)
τ2k

(2k)!
. (11)

Canonical product formulas and their order condi-
tions are further discussed in [50, Section II].

A direct expansion of T (t) gives the correct t-
dependence O(t2k+1) of the product-formula error,
but the scaling in n is incorrect. Instead, we seek
an alternative expression for the integrand that con-
sists of a linear combination of nested commutators,
where the number of commutators and nested layers
are both independent of n and t. Such an expres-
sion is referred to as a local error representation in
[51]. However, the result of [51] depends on auxil-
iary functions whose recursive structure is hard to
unravel. Instead, we develop a simpler representa-
tion of the local error structure [50, Section III].

In our representation, the operator T (τ)
can be written as a linear combination
of operator-valued functions of the form
eiτX1 · · · eiτXlY e−iτXl · · · e−iτX1 , where operators
Xj , Y ∈ {Heven, Hodd}. As such, its higher-order
derivatives consist of unitary conjugations and
commutators. When a commutator is composed, we
imitate (7) to show that the support of the operator
is expanded by at most a constant factor. When

a unitary conjugation is composed, we decompose
the unitary operators and cancel exponentials
with non-overlapping supports. Throughout this
procedure, we only introduce O(n) error in the
innermost layer, proving the claim in (3) for the
higher-order cases. This error analysis is discussed
in more details in [50, Section IV].

Generalized lattice Hamiltonians. We have
so far focused on time-independent one-dimensional
systems with nearest-neighbor interactions and open
boundary conditions. However, our analysis can be
easily adapted to handle time-dependent Hamilto-
nians, periodic boundary conditions, constant-range
interactions, and higher-dimensional systems, again
with nearly optimal gate complexity.

When the Hamiltonian H(t) is time-dependent,
the problem of quantum simulation becomes more
difficult [54]. Then there no longer exists a closed-
form solution to the Schrödinger equation. Further-
more, some quantum simulation algorithms [22, 25]
that behave well in the time-independent case fail to
handle the time-dependent Hamiltonian simulation.
Nevertheless, we show that product formulas can
simulate time-dependent lattice Hamiltonians with
nearly optimal gate complexity. We group the terms
in the even-odd pattern

Hodd(t) = H1,2(t) +H3,4(t) + · · ·
Heven(t) = H2,3(t) +H4,5(t) + · · ·

(12)

and simulate using the time-dependent Lie-Trotter-
Suzuki formulas ST ,2k(t) [54]. We show that∥∥∥∥ST ,2k(t)− expT

(
−i
∫ t

0

dv H(v)

)∥∥∥∥ = O
(
nt2k+1

)
(13)

where expT denotes the time-ordered matrix expo-
nential. Similar to the time-independent case, we
find that the total gate complexity is O

(
(nt)1+

1
2k

)
.

See [50, Section V] for detailed discussions.
We also consider lattice Hamiltonians with peri-

odic boundary conditions H =
∑n−1
j=1 Hj,j+1 +H1,n,

where Hj,k represents a local term that acts nontriv-
ially only on qubits j and k. To simulate such a sys-
tem, we decompose H as H = Hbndry+Heven+Hodd,
where Hbndry = H1,n. Correspondingly, we also
use a canonical product formula with three expo-
nentials per stage. With a similar analysis for the
open boundary condition, we find that the product-
formula error is O(nt2k+1) as expected.

A generalization of this approach allows us to
simulate a D-dimensional lattice Hamiltonian with
nearly optimal gate complexity. We use a 2D-
coloring of the edges of the lattice to decompose the
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Hamiltonian into 2D terms, each of which is a sum of
commuting terms. We also extend the definition of
canonical product formulas to allow for 2D exponen-
tials per stage. An analysis of the local error struc-
ture shows that this algorithm has gate complexity
O((LDt)1+

1
2k /ε

1
2k ) = O((nt)1+

1
2k /ε

1
2k ), where n is

the total number of lattice sites and L = n
1
D is the

linear size of the lattice.

Finally, our algorithm can also simulate lattice
Hamiltonians with constant-range interactions H =∑n−`+1
j=1 Hj,...,j+`−1. To achieve nearly-optimal gate

complexity, we classify the Hamiltonian terms into
the ` groups

H[1] = H1,...,` +H`+1,...,2` + · · ·
H[2] = H2,...,`+1 +H`+2,...,2`+1 + · · ·

...

H[`] = H`,...,2`−1 +H2`,...,3`−1 + · · ·

(14)

and use a product formula with ` elementary expo-
nentials per stage.

Discussion. The product-formula algorithm is ar-
guably the simplest approach to quantum simula-
tion. We have showed that this approach can sim-
ulate lattice Hamiltonians with nearly optimal gate
complexity. Our algorithm invokes product formulas
by ordering terms in an even-odd pattern, which is
conceptually easy to understand and straightforward
to implement. Beyond the one-dimensional time-
independent system with nearest-neighbor interac-
tions and open boundary conditions, our analysis
is also applicable to periodic boundary conditions,
constant-range interactions, higher dimensions, and
the time-dependent case, all with nearly optimal
gate complexity. Our result also gives product-
formula bounds that are much tighter in practice.

Recently, Haah, Hastings, Kothari and Low
(HHKL) proposed another nearly optimal algorithm
for lattice simulation [12]. Instead of analyzing the
product-formula approach, they develop a new ap-
proach motivated by the Lieb-Robinson bound [55,
56], which quantifies how fast information can prop-
agate in a system with local interactions. HHKL
decomposes the entire evolution into blocks, where
each block involves forward and backward evolution
on a small region. Using product formulas within
each block, their approach gives an ancilla-free al-
gorithm for lattice simulation with asymptotic gate
complexity (nt)1+o(1). However, this results in a
much larger constant prefactor in practice than the
pure product-formula algorithm analyzed here [50,
Section VI].

The near optimality of HHKL depends essentially
on the use of a Lieb-Robinson bound. As noted in
[12], it may be difficult to apply this idea to Hamil-
tonians whose interactions are described by general
graphs. Our approach directly exploits the com-
mutation of lattice terms without the help of Lieb-
Robinson bounds, which we expect could illuminate
the simulation of other physical systems [9, 41–43].

Our local error analysis represents the product-
formula error as an integral of a linear combina-
tion of nested commutators. Similar techniques have
been used to establish the Lieb-Robinson bound and
to study computational complexity aspects of many-
body physics [41, 55–57]. We leave it as an avenue
for future work to explore whether these techniques
could find more applications in the study of locality
in quantum systems.
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