
This is the accepted manuscript made available via CHORUS. The article has been
published as:

From Stress Chains to Acoustic Emission
Ke Gao, Robert Guyer, Esteban Rougier, Christopher X. Ren, and Paul A. Johnson

Phys. Rev. Lett. 123, 048003 — Published 26 July 2019
DOI: 10.1103/PhysRevLett.123.048003

http://dx.doi.org/10.1103/PhysRevLett.123.048003


From Stress Chains to Acoustic Emission

Ke Gao,1, ∗ Robert Guyer,1, 2 Esteban Rougier,1 Christopher X. Ren,1 and Paul A. Johnson1

1Geophysics, Los Alamos National Laboratory, Los Alamos, NM, USA

2Physics, University of Nevada-Reno, NV, USA

(Dated: July 2, 2019)

Abstract

A numerical scheme using the combined finite-discrete element method (FDEM) is employed

to study a model of an earthquake system comprising a granular layer embedded in a formation.

When the formation is driven so as to shear the granular layer, a system of stress chains emerges.

The stress chains endow the layer with resistance to shear and on failure launch broadcasts into

the formation. These broadcasts, received as acoustic emission, provide a remote monitor of the

state of the granular layer, of the earthquake system.
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Low frequency earthquakes (LFEs) [1], non-volcanic tremor [2–4] and acoustic emission [5, 6]

are examples of weak seismic signals that may serve as harbingers of a major seismic event,

an earthquake [7]. In a laboratory setting [8], in which stick-slip events are simulated,

acoustic emissions are detected away from the stick-slip events [9]. Recent machine learning

and related studies [10, 11] of the acoustic emissions are able to use them to predict location

in the seismic cycle, i.e., the evolution of the acoustic emission as a stick-slip scenario

unfolds allows one to follow the scenario and anticipate the subsequent earthquake. In

all cases, field and laboratory, the signals involved are sourced or detected in a volume

remote from the volume that spawns the earthquake. These findings bring to the fore the

question of the causal relationship between signals detected on passive, remote monitors and

the dynamics of the elastic structures that launch important seismic events. In this paper

we introduce a numerical model that lets us follow this causality, i.e., examine/connect

the dynamics in a granular system (fault gouge), to signals detected on passive remote

monitors. Thus we show that stress chains [12, 13] are the principals in the dynamics of

the granular system and that this dynamics is the source of the acoustic emission. The

numerical model necessarily combines discrete element methods (DEM), to describe grain-

grain interactions, and finite element methods (FEM), to describe elasticity within grains

and wave propagation away from the granular system [14–16]. More details about FDEM

can be found in the Supplementary Material [17].

The numerical model, two dimensional, comprises a gouge layer of approximately 50×1 cm2

sandwiched between two 50 × 25 cm2 pieces of formation [18] (Fig. 1). The gouge layer is

filled with particles (disks) of two diameters, 1.2 and 1.6 mm, and each particle is represented

by 24 approximately equal size constant strain triangular FEM elements. The particles are

in contact with one another and with the formation via a penalty function based contact

interaction algorithm [19]. A normal force N is applied to the bottom edge of the lower

formation piece, essentially rigid, that is fixed in x. The top edge of the upper formation

piece, also essentially rigid and fixed in y, is driven uniformly at constant velocity V0 in

the x-direction. The material density and elastic properties of gouge, formation, and top

(bottom) edge of the formation piece are recorded in Table I of the Supplementary Material

[17], in which more details about the model setup are also included.
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Typically the state of the system is set by a choice of V0 and N : in the example here

V0 = 0.50 mm/sec and N = 28 kPa. The basic output is the shear and normal forces

between the formation and gouge [20]. This is shown in Fig. 2 as a coefficient of friction

(black), µ = (shear force)/(normal force), vs time. This stress-time pattern has several

qualities of note. There is on average a linear stress-time relationship that is punctuated by

many small and a few large stress drops. Compressive structures form in the gouge that push

back against the effort of the upper formation piece to drag the lower formation piece along

[12, 13]. The three green lines, all with the same slope, illustrate the underlying spring-like

character of the elasticity of the gouge. Large stress drops occur irregularly in time. The

stress values at which large stress drops occur vary markedly, i.e., there is no single stress

at which the system fails.

To begin to look at the dynamics of the system we look at the behavior of the formation

immediately adjacent to the gouge. At the top of the gouge (T) (at the bottom of the upper

formation piece) and at the bottom of the gouge (B) (at the top of the lower formation

piece) there are 80 uniformly spaced sensor pairs that detect the motion of the formation,

i.e., the velocity of the formation point with which the sensor is identified. In Fig. 2 we plot

the average x-velocity of 80 T-sensors (sensors just above the gouge and near its center) as

a function of time, V
T

X(t) (blue)

V
T

X(t) =
1

80

80∑
n=1

V T
X (t, n), (1)

where V T
X (t, n) is the x-component of the velocity of T-sensor n at time t. The velocity

V
T

X(t) has a background value of approximately 0.25 mm/sec (V0/2) from which there are

spikes in velocity that coincide with sharp, large (1 mm/msec) stress changes. In Fig. 2

we also plot the average x-velocity of the 80 associated B-sensors (sensors just below the

gouge and near its center) as a function of time, V
B

X(t) (red). The velocity V
B

X(t) also has a

background velocity of approximately 0.25 mm/sec. From this background there are spikes

in V
B

X(t) that coincide with sharp, large stress changes. The spikes in V
B

X(t) are opposite

in sign from the spikes in V
T

X(t). That is, attending sharp, large stress changes are sharp,

large velocity dipoles delivered to the formation. We focus on these velocity dipoles. To
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characterize them we form the velocity dipole field

D(t, n) =
V T
X (t, n)− V B

X (t, n)

2
(2)

that has a value at each moment of time t at each sensor n, see the Supplementary Material

[17]. The spectrum of values of D(t, n), shown in Fig. 3(a), is broadly distributed, 10−8 <

D(t, n) < 0.2. We use the magnitude of the velocity dipole field to form a detailed picture

of the space-time structure of events in the gouge. This is illustrated in Figs. 3(b) and (c)

for the large stress drop (∆µ/µ ≈ 0.2) near 11, 000 msec in Fig. 2. Figure 3(b) is a zoom

of the stress drop; Fig. 3(c) shows the space-time points at which the velocity dipole field is

large. The sharp drop in Fig. 2 is ragged in close up, Fig. 3(b), and involves a complex set

of events throughout much of the gouge, Fig. 3(c). We employ the velocity dipole field to

establish the connection between stress chains, that live in the gouge, and the displacement

field in the formation, far from the gouge, i.e., stress chains→ D(t, n) → acoustic emission.

To this end we use the velocity dipole field to locate and examine small, simple events. In

Fig. 4(a) there are 3 stress drops of modest size (∆µ/µ ≈ 0.002, about 1% of the stress

drop in Fig. 3). We look in detail at the third of these stress drops, Fig. 4(a). This stress

drop occurs rapidly in time, lasting approximately 3 msec, and locally in space, involving

large D(t, n) at about 20 sensors, Fig. 4(b). To see more details we examine V T
X (t, n) and

V B
X (t, n) separately in Fig 4(c). We see that while V T

X (t, n) and V B
X (t, n) are simultaneous

in time they are structured in space. The B-sensors contributing to the velocity dipole field

are further along in x than the associated T-sensors. The structural feature in the gouge,

that upon failure delivers the forces that produce the velocity dipole field in the formation,

acts like a strut. It is tethered to the formation so that it can deliver a shear stress that

crosses the gouge and gives the gouge (an unconsolidated material) a shear modulus. We

characterize the spatial structure of the velocity dipole field associated with small events like

that in Fig. 4(b) with a measure of the separation of the points of tether, ∆n = −nB
X − nT

X ,

n∗
X =

∑
n n d∗X(n)∑
n d∗X(n)

, d∗X(n) =

∫
dt V ∗

X(t, n), (3)

where the integral on t and the sum on n are over a domain that surrounds the small event,

d∗X(n) is the displacement of sensor n, and nB
X (nT

X) is typically negative (positive). For the

spectrum of rF = 0.24∆n/H we find the result shown in Fig. 5, where H is the nominal
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gouge layer thickness and 0.24 mm is the spacing between sensors. While the average value

of rF is ≈ 0.5, and there are both positive and negative values of rF .

We turn from examination of the motion of the formation, as evidenced in the behavior of the

velocity dipole field, to the examination of forces in the gouge. To do this, for each element

in a gouge particle at each time t, we find the maximum principal stress. We take this stress

to characterize the force the element is carrying. When the elements carrying large stress are

marked with a black dot an oriented fabric of large stresses that cross the gouge is revealed,

Fig. 6. Isolated stress chains are an important component of this fabric. These chains are

oriented approximately as suggested by the velocity dipole field, e.g., Fig. 4(c). To make

quantitative comparison of the force fabric with the velocity dipole field we characterize

isolated stress chains that cross the gouge with rG = ∆X/H, where ∆X is the projection

of the chain figure onto the x-axis and H is the width of the gouge. The spectrum of rG for

isolated stress chains is shown in Fig. 5.

The velocity dipole field has been used to examine events that are local in space and time.

The two components of the velocity dipole field reveal detail about the structure in the gouge

that produced the event. Often forces are delivered to the T-sensors that are upstream from

the forces delivered to the B-sensors. This orientation mirrors the orientation of the fabric

of forces in the gouge, Fig. 6. The most extreme components of this fabric are the isolated

linkages that reach from T to B. From Fig. 5 and Fig. 6 there are more complex structures

in the force fabric. On failure these structures deliver forces to T and B that are not easily

identified with a simple geometry. Comparison of the spectrum of rG and the spectrum of

rF confirms that the geometry of the stress chains is closely related to the geometry of the

velocity dipole field.

We complete the argument, stress chain → acoustic emission, by examining the motion of

points in the formation far from the gouge, i.e., far from the velocity dipole field. This

is done in Fig. S4 of the Supplementary Material [17], where it is seen that points in the

formation remote from the gouge move much the same way as the velocity dipole field. The

causality is stress chain→ velocity dipole field→ far field signal, i.e., acoustic emission. The

complexity of the numerical model, gouge plus formation, means that the simulations are
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quite long. Consequently the formation does not have true far field points. The explicit near

field demonstration in Fig. S4 could be complemented by use of the representation theorems

in Aki and Richards [21] that would have the velocity dipole field as source for broadcast

into the formation.

By the evidence of Fig. 6(b) one might estimate the stress chains to be separated by ap-

proximately the average of their projection onto the x-axis; a number of order H. This

suggests that on average about 50 stress chains live in the gouge. A single stress chain on

failure releases stress that is a few percent of the stress drop associated with a large slip.

This is consistent with a large slip involving almost all of the extant stress chains, compar-

ing Fig. 3 and Fig. 4. In addition to assigning stress chains responsibility for time-sharp

events we assign the elasticity evidenced in the average rise in stress seen in Fig. 2 to their

compression.

To conclude, we have employed a FDEM treatment of a numerical model of a sheared gouge

layer. The formation adjacent to the gouge and the interior of the particles that comprise

the gouge have linear elasticity that is resolved with an FEM treatment. Interactions of

gouge particles with one another and with the formation, involving repulsive-only forces,

are resolved with a DEM treatment. When at fixed normal force the system is sheared at

constant drive velocity the basic stress-time behavior shows intermittent large stress drops

separated by intervals of approximately uniform elastic compression. The principal actors

in the gouge are stress chains. Two sets of sensors at the gouge-formation interfaces allow

determination of the velocity dipole field which describes the disturbance to the formation

caused by the activity in the gouge. The motion of the formation far from the gouge, taken

to be the acoustic emission, is monitored. Using the velocity dipole field we establish (a)

the linkage between stress chains and the velocity dipole field and (b) the linkage between

acoustic emission and the velocity dipole field. That is, the relationship between the activity

in the gouge and the far field. This is an example of a causal scenario that one might

encounter and take advantage of in geophysical systems. Non volcanic tremor, LFEs, etc.

are far fields that may have a role in such a scenario. The great complexity of geophysical

elastic systems makes the usefulness of such a scenario problematic. However, the rapid

increase in the quality and quantity of reliable geophysical monitoring and the infusion of
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new, sophisticated analysis methods offer promise that such scenarios are foreseeable.
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FIG. 1. Model system. The formation and the interior of the particles is described with a FEM

scheme. The contacts of gouge particles with one another and with the formation are described

with a DEM scheme. The formation has a rough surface profile (lower right). Sensors in the

formation surface, adjacent to the gouge, are spaced by 2.4 mm. The elastic properties of gouge

and formation are listed in the Supplementary Material [17].
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FIG. 2. Primary outputs. The coefficient of friction (black) as a function of time, left hand scale.

The average velocity of the top (T, blue) and bottom (B, red) sensors as a function of time, Eq. (1),

right hand scale. The green lines, all of the same slope, show the average elasticity of the gouge.

The stress drop near 11, 000 msec (marked by red line) is examined in Fig. 3.
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FIG. 3. Spectrum of velocity dipole strengths, D. (a) The spectrum of velocity dipole strengths,

for all space-time points, Eq. (2), is broadly distributed from 10−8 to approximately 0.2. The

space-time points (n, t) with large D (in the 3 intervals red, green, blue on the lower right in (a))

are used to identify events. The stress near 11, 000 msec in Fig. 2 is shown in detail in (b), time

is measured from 11, 000 msec where µ = 0.45, i.e., time 0 msec here corresponds to time 11, 000

msec in Fig. 2. The velocity dipole strength at (n, t) for this time interval is shown in (c) where

the time axis is the same as in (b) and n is on the vertical axis. The velocity dipole strength is

shown with the color coding from (a).
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FIG. 4. Details of a small, simple event. (a) Friction coefficient vs time for 3 adjacent small events

that have stress drop a few percent of a major event such as the one in Fig. 3(b). These events

are near time 25, 500 ms where µ = 0.47. (b) The velocity dipole strengths associated with the

third event in (a), on sensors 1 · · · 35, color coded from Fig. 3(a), for 9 ms measured from time

25, 545 ms. (c) Velocity dipole composition during the 9 msec interval in (b): the velocity of the

top sensor set (blue) and the velocity of the bottom sensor set (red), displaced to the right for

clarity.
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FIG. 6. Stress chains. (a) The spectrum of maximum principal stress of all elements in the gouge.

(b) Elements in the FEM description of the particles, with maximum principal stress greater than

0.4 MPa. Each black dot represents the centroid position of the corresponding element. Two chains

of elements at the right, 1 and 2, are judged to be isolated as is the chain 3 on the left. These

chains are among the chains used to form the pdf of rG in Fig. 5.
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