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Abstract 

Above-bandgap optical illumination of compressively strained BiFeO3 induces a transient 

reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like 

phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals 

that the transformation is induced by an ultrafast optically induced lattice expansion that shifts 

the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation 

proceeds at boundaries between regions of the tetragonal-like phase and regions a mixture of 

tilted phases, consistent with the motion of a phase boundary. The optically induced 

transformation demonstrates that there are new optically driven routes towards nanosecond-scale 

control of phase transformations in ferroelectrics and multiferroics.  
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Ferroelectric and multiferroic oxides can be transformed between structural phases with 

different structures and properties by applied pressure, stress, and electric or magnetic fields [1-

3]. These systems are particularly sensitive to external stimuli when placed near a phase 

boundary by lattice-mismatched epitaxial growth or chemical substitution [4-6]. Epitaxial growth 

on an LaAlO3 (LAO) substrate, for example, places multiferroic BiFeO3 (BFO) near the 

boundary between rhombohedral-like and tetragonal-like phases that differ significantly in their 

properties [4]. Both phases have monoclinic symmetry but have different directions and 

magnitudes of the ferroelectric polarization [7,8]. Furthermore, the magnetism of the tetragonal-

like phase exhibits weaker order than the rhombohedral-like phase due to the suppression of the 

canting of the antiferromagnetic sublattice [9,10]. Differences in the Fe-O bond lengths and Fe-

Fe distances also lead to differences in the band structure and in electronic and optical properties 

of the two phases [11]. Understanding the mechanisms of the transformation and how it can be 

induced at ultrafast timescales has the potential to lead to the creation of optically tunable and 

reconfigurable complex oxide electronic and optical materials.  

A reversible transformation to the tetragonal-like phase of BFO can be driven by an external 

electric field [12,13]. Density functional theory studies indicate that the tetragonal-like phase 

becomes energetically favorable when the lattice is expanded along the out-of-plane direction 

[14]. Several questions remain regarding the transformation mechanisms, the transformation 

pathway, and its dynamics. A challenge in studying the transformation using an electric fields is 

that the time resolution is limited by the charging times of the relatively large thin-film devices 

and with difficulty in applying high fields in electrically leaky materials [14]. 

Femtosecond-duration above-bandgap optical pulses generate a transient out-of-plane strain 

in ferroelectrics and multiferroics, providing a non-contact, ultrafast means to investigate their 
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dynamics. Optical excitation of ferroelectrics and multiferroics generates lattice expansion up to 

on the order of 1% [15-19]. One mechanism of the expansion arises from screening of surface 

and interfacial bound charges by excited charge carriers, changing the internal electric field and 

generating electromechanical distortion [19,20]. Studies of the electrically driven BFO phase 

transformation indicate that the optically excited expansion would be sufficiently large to induce 

the transformation to the tetragonal-like phase [14]. 

Here we report a rapid reversible transformation between phases in compressively strained 

BFO induced by ultrafast optical excitation. Time-resolved x-ray microdiffraction shows that the 

optically induced lattice expansion and the transformation both reach their maxima within 1 ns 

after excitation. X-ray microscopy shows that the transformation occurs in regions in which there 

are boundaries between the tetragonal-like phase and the tilted tetragonal-like and tilted 

rhombohedral-like phases. Together, these observations suggest a mechanism in which the 

tetragonal-like phase is stabilized by the lattice expansion and grows into regions of coexisting 

populations of the tilted tetragonal-like and tilted rhombohedral-like phases. The structural 

changes during the optically induced transition are distinct from those at high temperature, 

including differences in the variation of the lattice parameter and phase population. 

Time-resolved x-ray microdiffraction experiments were conducted at station 7ID-C of the 

Advanced Photon Source using the arrangement in Fig. 1(a). X-rays with a photon energy of 11 

keV and 100 ps pulse duration were focused to a 400 nm full-width-at-half-maximum (FWHM) 

probe spot. The optical pump consisted of 50-fs-duration pulses with 1 kHz repetition rate and 

400 nm wavelength, above the bandgap of BFO on LAO [21-23]. A complementary full-field x-

ray diffraction microscopy study employed beamline ID-01 of the European Synchrotron 

Radiation Facility [24]. 
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The 70 nm-thick BFO thin film was grown on an La0.7Sr0.3MnO3 (LSMO) bottom electrode 

on LAO by pulsed laser deposition [12]. The tetragonal-like and rhombohedral-like phases are 

referred to as the T and R phases, respectively [4]. The epitaxial mismatch of -4.5% between 

BFO and LAO leads to the formation of the T phase, the stable form at high compressive strain. 

The stored elastic energy of the film is reduced by forming regions of stripes of alternating tilted-

T (TT) and tilted-R (TR) phases with widths of approximately 50 nm within the larger field of 

the T phase [4,8,25-27]. Figures 1(b)-(d) show the diffracted intensity near the 002 T phase 

reflection acquired with an unfocused 50 μm FWHM x-ray beam, averaging over all BFO phases. 

Figure 1(b) shows part of the Qz-Qy plane of reciprocal space in which the TT and TR phases 

appear at Qz = 2.69 Å-1 and 3.02 Å-1, respectively. Eight intensity maxima arising from the TT 

phase and a single T reflection appear in the Qy-Qx plane at Qz = 2.70 Å-1 in Fig. 1(c). The TR 

phase also exhibits four pairs of reflections, as in Fig. 1(d). The eight intensity maxima of the TT 

and TR phases indicate that there are eight domains of each tilted phase [12,28,29]. The 

reflections in Figs. 1(c) and (d) are numbered in order to discuss them precisely. In the striped 

microstructure, the TT reflections (1) and (4) are paired with the TR reflections (5) and (8), 

respectively [27,30,31].  

 Optical excitation leads to an expansion of the T phase, as in Fig. 1(e), in which the 002 

T phase reflection measured using x-ray microdiffraction is shifted to a lower Qz at 1 ns after 

excitation at an fluence of 10.7 mJ/cm2. At this fluence, the lattice expansion has a magnitude of 

0.16% and is accompanied by an 8% increase in the integrated diffracted intensity. The changes 

in the volume of the film occupied by each phase were measured using the changes in the 

integrated intensities of corresponding x-ray reflections. The phase populations were determined 

using an analysis considering the different scattering factors of each phase (see Supplemental 
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Material [32]). The T, TT, and TR phases initially occupy 75%, 15%, and 10% of the film, 

respectively, matching report for BFO films on LAO with similar thicknesses [4]. The intensities 

of the TT and TR reflections decreased by 28% and 7%, respectively, at 1 ns with a fluence of 

10.7 mJ/cm2. The population changes indicate that there is a transformation from the TT and TR 

phases to the T phase. 

The variation of the out-of-plane lattice parameter of the T phase as a function of the delay 

time t is shown in Fig. 2(a) for a fluence of 10.7 mJ/cm2. The out-of-plane lattice expansion of 

the T phase was 0.14% at t=200 ps and reached a maximum of 0.16% at t=1 ns. Two physical 

effects are apparent in the expansion of the T phase. The initial expansion occurs with a 

timescale set by the propagation of a longitudinal elastic wave through the film thickness, on the 

order of tens of ps, which is less than the experimental time resolution [17]. A second, long-

timescale, component of the lattice expansion, apparent from 200 ps to 1 ns in Fig. 2(a), is not 

consistent with the acoustic response and is compared below with the timescale of the motion of 

the phase boundaries. The possibility that thermal diffusion produces the slow risetime can be 

evaluated by comparing the thermal diffusion length √ݐܦ  with the film thickness. Using 

D=1.2×10-4 m2/s [19] gives √350=ݐܦ nm at t=1 ns, which is far larger than the BFO thickness 

and indicates that the peak average temperature is reached at a far shorter time than 1 ns. A 

complete thermal diffusion simulation based on methods in ref. [39] appears in the 

Supplementary Material.  

The integrated intensity of the T phase reflection, Fig. 2(b), increases for times up to 1 ns. 

The intensities of the TT (4) and TR (8) reflections decrease after optical excitation and reach 

minima at time t=1 ns, matching the timescale of the change in the T phase intensity. At t=1 ns, 

the population of the T phase increases to 81% of the BFO volume, and gradually returns to 76% 
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at t=12 ns. The populations of the TT and TR phases decrease to 10% and 9% at t=1 ns, 

respectively, in agreement with the 6% change in the T phase population at that time. In contrast 

with this mixed-phase sample, optical excitation of pure R phase BFO leads to negligible 

intensity changes [17-19]. 

The magnitude of the T phase lattice expansion increases at higher fluence, reaching 0.45% 

at t=1 ns at 20 mJ/cm2, as in Fig. 3(a). The intensities of the T, TT, and TR phases also exhibit 

larger-magnitude changes as a function of increasing fluence, as in Fig. 3(b). The monotonic 

variation of the intensity changes is consistent with a continuous shift of the energetic balance 

between the competing phases rather than a transformation at a critical value of the optically 

induced expansion. A similar continuous transformation with increasing electric field is observed 

in the electric-field-driven transformation from R to T phases of BFO [14]. 

A Landau-Ginzburg-Devonshire model was used to predict the energetic stability of the T 

and R phases as a function of the optically induced distortion. The phases have equal free 

energies at a biaxial misfit strain of -4.3%, consistent with the previously reported phase 

boundary. An out-of-plane lattice increases the free energy of the T phase less than the R phase 

(see Supplementary Material) and favors a transformation from the R phase to the T phase. The 

difference in the free energies grows monotonically with lattice expansion. The continuous 

increase in the free-energy difference agrees with the experimental observation that the 

transformation proceeds without a single threshold value of the fluence or expansion. 

The differences between optical excitation and heating were evaluated using variable-

temperature diffraction with a laboratory x-ray source. As shown in Fig. 3(c), the T phase lattice 

parameter expands by 0.45% from room temperature to 110 ºC and shrinks as the temperature 

increases from 110 ºC to 200 ºC, where it has a value close to the lattice parameter at 90 ºC. The 



 
7

variation of the intensities during heating, Fig. 3(d), does not match the intensity changes 

resulting from the optically induced transformation. First, heating leads to a decrease (rather than 

the optically induced increase) in the T phase intensity, by 20% at 110 ºC. A similar intensity 

decrease has been observed in pure T phase BFO, which indicates that the decrease in the 

intensity of the T phase reflection at elevated temperatures does not originate from a phase 

transformation [40]. Similarly, the intensities of the TT and TR phases are not consistent with a 

transformation between phases below 130 ºC. The change in integrated intensity of the TR phase 

reflection is negligible during heating to 130 ºC. The TT phase reflection intensity increases by 

10% at 70 ºC and drops to its room-temperature value at 130 ºC.  

The transformation observed at high temperature is also distinct from the optically induced 

transformation. From 140 ºC to 200 ºC, the intensities of the TT and TR phase reflections 

decrease and the intensity of the T phase reflection increases, matching literature reports [25,26]. 

A key difference between optical and thermal effects, however, is that the high-temperature 

phase transformation occurs in a regime in which the lattice parameter of the T phase decreases, 

opposite to the optically excited observation. Similarly, the initial increase in the T phase lattice 

parameter during heating is accompanied by a decrease in the T phase intensity, rather than the 

increase observed during optically induced expansion. 

The spatial arrangement of the coexisting BFO phases suggests a mechanism for the 

transformation.  Scanning x-ray microdiffraction images reveal that the TT and TR phases exist 

in multiple spatially separated populations and that the optically induced transformation occurs 

via the simultaneous changes in the coexisting variants. Microdiffraction maps of the integrated 

intensities of TT (4) and TR (8) phase reflections, Fig. 4(a), show that these variants occur in the 

same region, matching previous reports [29]. A similar spatial correlation is also exhibited by the 
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TT (1) and TR (5) variants and is observed in full-field x-ray microscopy (see Supplementary 

Material).  

A time-resolved microscopy study was conducted to probe the spatial variation of the 

optically induced transformation. The lattice expansion in the T phase was measured using 

reciprocal space maps acquired in a 1.2 µm × 200 µm area at the position indicated by arrows in 

Fig. 4(a) before optical excitation and at t=1 ns following pulses with a fluence of 10.7 mJ/cm2. 

The optically induced T-phase lattice expansion in Fig. 4(b) is independent of position, which 

indicates that the expansion does not depend on the local phase population.  

The optically induced change in intensity and the extent of the optically induced 

transformation depend very strongly on the local phase population. The T phase intensity and the 

fractional change in intensity after optical excitation both vary significantly as a function of 

position, as shown in Figs. 4(c) and 4(d).  In contrast with the nearly constant optically induced 

expansion, the fractional change in T phase intensity ranges from 0 to nearly 20%. Regions with 

near-zero change in the T-phase intensity exhibit two key structural features: (i) these regions 

have low TT and TR phase population (see Supplemental Material) and (ii) the T phase lattice 

parameter, Fig. 4(b), is large and has a value close to the lattice parameter of films in which the T 

phase has not elastically relaxed through the formation of other phases [41]. Taken together, 

these observations indicate that the transformation proceeds only in regions where T, TT, and TR 

phases coexist. 

The observation here of a simultaneous decrease in TT and TR phase reflections following 

optical excitation is not consistent with a previously proposed sequential transformation 

mechanism involving an initial transition between the TR and TT phases, followed by a 

subsequent transformation to the T phase [31]. The simultaneous and proportional changes in the 
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intensities of x-ray reflections of spatially coexisting tilted phases instead suggest a mechanism 

in which the tilted phases are simultaneously transformed to the T phase. Α mesoscopic process 

that would enable the simultaneous and continuous transformation from a mixture of TT and TR 

phases to the T phase is illustrated in Fig. 4(e).  In this process, the boundary between the T 

phase and the TT and TR phases progresses into the mixed phase region. A similar growth of the 

T phase into mixed-phase regions has been observed using band-excitation piezoelectric force 

microscopy, with nearly equal magnitudes of the transient T-phase lattice expansion and a 

transformation over lateral distances consistent with the changes in TT and TR phase populations 

reported here [42]. 

The observation of the optically induced transformation in BFO has several implications in 

understanding and applying phase transformations in ferroelectrics and related materials. With 

respect to electromechanical distortion, the results suggest that nanosecond-scale lattice 

expansion with a large contribution arising from the transformation between phases can be 

produced by optical excitation. Furthermore, the optically induced phase transformation can 

potentially suppress the magnetic moments of BFO because the transformed part of the film 

changes from the R phase, which has a large magnetic ordering, to pure T phase with weak 

magnetic order [10]. This work ultimately broadens the potential of ultrafast optical excitation to 

change structural phases and coupled multiferroic properties. 
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FIG 1. (a) X-ray diffraction experimental schematic illustrating the directions of the optical and 

x-ray pulses and the mesoscale arrangement of coexistenting TT, TR, and T phases. Arrows 

illustrate the growth of the T phase region by phase boundary motion. (b) Section of the Qy-Qz 

plane of reciprocal space at Qx = 0, near the 002 T phase reflection. (c) TT and T phase 

reflections in the Qx-Qy plane at Qz = 2.70 Å-1. (d) TR phase reflections in the Qx-Qy plane, 

integrating from Qz =2.90 Å-1 to 3.08 Å-1. Individual reflections are numbered. (e) Intensity as a 

function of Qz for the 002 T phase reflection before optical excitation and at t=1 ns with fluence 

10.7 mJ/cm2. 

FIG 2. (a) Lattice expansion in the T phase and (b) fractional intensity changes of T, TR (8), and 

TT (4) phase reflections as a function of time following optical excitation at fluence 10.7 mJ/cm2. 

FIG 3. (a) T phase lattice expansion and (b) integrated intensities of the T, TT (1), TT (4), TR (5) 

and TR (8) reflections as a function of fluence at t=1 ns. Angular scans recording the intensities 

were conducted for different numbers of values of the fluence for each phase, resulting in 

different numbers of fluence points for each reflection. (c) T phase lattice expansion and (d) 

integrated intensities of the T, TT, and TR phase reflections as a function of temperature. 

FIG 4. (a) Scanning x-ray microdiffraction maps of TT (4) and TR (8) phases. (b) Lattice 

expansion along the out-of-plane direction, out-of-plane lattice parameters, (c) integrated 

intensities before optical excitation and at t=1 ns, and (d) fractional T phase intensity change 

along the line indicated by black arrows in (a). Shaded areas in (c) and (d) indicate regions with 

large T phase lattice parameter and small changes in the T phase population. (e) Top-view 

schematic of an optically induced phase transformation mechanism involving expansion of the T 

phase into the region of mixed TT and TR phases. 
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