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Strong, long-range interactions present a unique challenge for the theoretical investigation of
quantum many-body lattice models, due to the generation of large numbers of competing states at
low energy. Here, we investigate a class of extended bosonic Hubbard models with off-site terms
interpolating between short- and infinite-range, thus allowing for an exact numerical solution for all
interaction strengths. We predict a novel type of stripe crystal at strong coupling. Most interestingly,
for intermediate interaction strengths we demonstrate that the stripes can turn superfluid, thus
leading to a self-assembled array of quasi one-dimensional superfluids. These bosonic superstripes
turn into an isotropic supersolid with decreasing the interaction strength. The mechanism for
stripe formation is based on cluster self-assemblying in the corresponding classical ground state,
reminiscent of classical soft-matter models of polymers, different from recently proposed mechanisms
for cold gases of alkali or dipolar magnetic atoms.

PACS numbers: 05.30.-d, 67.80.K-, 64.75.Yz

The effects of long-range interactions on quantum
phases of many-body lattice systems is a hot topic of
research [1–5], which is driven by outstanding advances
in precision experiments with strongly interacting mag-
netic atoms [6–10], polar molecules [11, 12], Rydberg-
excited atoms [13, 14], ions [15–18], and neutral atoms
coupled to photonic modes [19–24]. For bosonic parti-
cles, exact numerical results from quantum Monte-Carlo
methods can in principle predict thermodynamic prop-
erties of any unfrustrated model. However, long-range
interactions in combination with confinement to periodic
potentials present a unique challenge as they generate a
proliferation of metastable low-energy states, whose num-
ber exponentially increases with the system size [25, 26],
even in the absence of external frustration. This usually
results in, e.g., devil’s staircase-type structures that are
essentially intractable [27–30].

Much interest was recently generated by the demon-
stration of stripe behavior in spin-orbit-coupled Bose-
Einstein condensates [31–35] as well as droplet formation
in clouds of dipolar magnetic atoms in the mean-field
regime [36–38], due to a competition of quantum fluc-
tuations, short- and long-range interactions [37, 39, 40].
Exact numerical results have further demonstrated theo-
retically that anisotropic dipolar interactions for particles
confined to two dimensions (2D) can generate stripe be-
havior while preserving superfluidity [41, 42], correspond-
ing to a possible realization of so-called stripe superso-
lidity [43, 44]. The latter has a long history in quantum
condensed matter, where it was first introduced as su-
perstripe phase, in that non-homogeneous metallic struc-
tures with broken spatial symmetry were found to favor
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FIG. 1. Sketch of the interaction potential chosen in our
work on a square lattice of spacing a [panel (a)]. The shaded
region indicates the interaction range, which extends up to
the critical radius rc = 2

√
2a. In the large-V limit, the GS of

model Eq. (1) at our chosen density ρ = 5/36 can be found by
tiling the lattice with clusters of type I, II and III [panel (b)].
Empty and full circles refer to empty and occupied lattice
sites, respectively.

superconductivity [45]. While the microscopic origin of
such a phase is still a subject of debate, it is clear that
a key role is played by a combination of strong interac-
tions and the lattice potential. In this context, key open
challenges are to propose and understand basic mecha-
nisms for (super)stripe formation on lattice geometries
of experimental interest and to provide exact theoretical
predictions in the regime of strong interactions.

In this work, we study the low temperature phase di-
agram of an ensemble of bosonic particles confined to
a square lattice geometry and interacting via a soft-
shoulder potential. The latter has a finite range that
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FIG. 2. Panel (a): Structure factor S(k) as a function of V/t for values of lattice wave vector k = (kc, 0) (up-pointing
triangles), (0, kc) (down-pointing triangles), (0, ks) (squares) characteristic of the IS, SC, and SS ordered phase, respectively
(see text). Here kc = 2π × 7/24 and ks = 2π × 1/3. Panel (b): Superfluid fraction ρs/ρ (circles), and ratio between the
superfluid responses ρx/ρy along the x horizontal and y vertical axis (diamonds). Panels (c)-(e): Finite-size scaling of S(k) and
ρs/ρ for V/t = 3.7 [panel (c)], 4.4 [panel (d)] and 6.0 [panel (e)]. Here same symbols refer to the same observables of panels (a)
and (b) while lines are linear fitting functions to our numerical data. Panel (f): Relative energy difference ∆Erel between the
SS and IS phases as a function of V/t. The SS has lower energy where ∆Erel is negative. In panels (a), (b), and (f) L = 96, in
all panels T/t = 1/20.

includes several lattice sites, thus interpolating between
nearest-neighbor and long-range physics, while remain-
ing numerically tractable. We utilize numerically exact
quantum Monte-Carlo simulations to study the phase di-
agram of this system as a function of the interaction
strength, finding several novel features: (i) For suffi-
ciently strong interactions, the ground state (GS) is a
highly anisotropic, insulating stripe crystal that emerges
due to cluster self-assembling in the corresponding clas-
sical GS. For intermediate interaction strength, we find a
surprising (ii) supersolid-supersolid quantum phase tran-
sition that separates an isotropic supersolid state from
(iii) a highly anisotropic stripe state. In the latter, super-
fluidity mostly occurs along horizontal (vertical) stripes
and is not suppressed at the supersolid-supersolid transi-
tion, while diagonal long-range order is found in the per-
pendicular direction – reminiscent of the so-called super-
stripe phase found in lattice-based superconductors [45].

We consider the following extended Hubbard Hamilto-
nian for hard-core bosons confined to 2D

H = −t
∑
〈i,j〉

(
b†i bj + h.c.

)
+ V

∑
i<j;rij≤rc

ninj , (1)

where bj (b†j) is the bosonic annihilation (creation) oper-

ator on site j, nj = b†jbj , and t is the nearest-neighbor
hopping energy on a square lattice of spacing a. In the
following t and a are taken as units of energy and length,
respectively. The last term of Eq. (1) represents the soft-
shoulder interaction between bosons with strength V , rij
is the distance between sites i and j, with rc the inter-

action potential cutoff. In classical physics, this inter-
action is of interest for soft-matter models of, e.g., col-
loids [46–48]. In quantum physics, similar interactions
can be engineered in clouds of cold Rydberg atoms, by
weakly-admixing a Rydberg state to the GS using laser
light [49–55]. Here, we choose rc = 2

√
2a for which in the

classical limit V/t→∞ each particle tries to establish an
avoided square region of total area 16a2 [see Fig. 1(a)].
For density ρ = 1/9 this is indeed possible and the sys-
tem can arrange into an optimal configuration charac-
terized by zero potential energy by covering the lattice
with clusters of type I, see Fig. 1(a). Conversely, for
higher densities the classical GS corresponds to the so-
lution of a tiling problem, where tiles are constituted by
clusters of particles and holes that are effectively bound
together by the repulsive interactions. The number of
such clusters, or tiles, increases with increasing particle
density. Figure 1(b) shows the three clusters I, II, and
III (i.e., the tiles) that appear at low energy for densities
1/9 < ρ < 1/6. Similarly to the 1D case [56, 57], the clas-
sical GS can then be built from the exponentially large
number of permutations of clusters I-III. This large de-
generacy is characteristic of long-range interactions and
can in principle constitute an obstacle to the solution of
the quantum problem. In the following, we determine the
effects of quantum fluctuations on this highly degenerate
classical GS by computing the quantum phase diagram
for model Eq. (1), for an example density ρ = 5/36. Our
focus is the determination of quantum phases and phase
transitions in this system.

We study Hamiltonian Eq. (1) by means of path in-
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FIG. 3. Ground state (GS) phase diagram of model (1) as
a function of the interaction strength V/t [panel (a)]. For in-
creasing values of V/t the GS is a superfluid (SF), an isotropic
supersolid (IS), an anisotropic stripe supersolid (SS) and
stripe crystal (SC) (see text). Panels (b), (c), (d), (e) show
site-density maps of a portion of the system for representative
interaction strengths at which the GS is a SF (V/t = 2.5), IS
(V/t = 3.7), SS (V/t = 4.3), and SC (V/t = 6.0), respectively.
The size of the dots is proportional to the occupation of the
corresponding sites.

tegral Quantum Monte Carlo simulations based on the
worm algorithm [58]. This technique is numerically ex-
act for unfrustrated bosonic models, giving access to ac-
curate estimates of fundamental observables such as, e.g.,
the superfluid fraction ρs/ρ =

〈
W 2

x +W 2
y

〉
/ (4tβρ), the

static structure factor S(k) =
〈∑

ij e
−ik·rijninj

〉
/N2,

and the single-particle equal time Green’s function

G(r) =
〈∑

i b
†
i bi+r

〉
/N . They measure superfluidity,

diagonal long-range, and off-diagonal long-range orders,
respectively. Here, β = 1/(kBT ) is the inverse tempera-
ture, with kB the Boltzmann constant (set to unity); Wx

(Wy) is the winding number along the x (y) direction,
k is a lattice wave vector and 〈. . . 〉 stands for statistical
averaging. Calculations are performed on lattices of size
N = L × L, with L as large as L = 96 and tempera-
tures as low as T/t = 1/96. We find that for T/t ≤ 1/20
results are essentially indistinguishable from the extrap-
olated GS ones.

The main results are presented in Fig. 2. Panels (a)
and (b) show estimates of the structure factor S(k)
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FIG. 4. Green’s functions Gx and Gy along the x (solid
lines) and y (dashed lines) directions, respectively, in the SF,
IS, SS, and SC. Here L = 96, T/t = 1/20 and the values of
V/t are the same as those in Fig. 3(b)-(e).

and the superfluid fraction ρs/ρ (left ordinate axis) to-
gether with the ratio between the superfluid responses
ρx/ρy ≡

〈
W 2

x

〉
/
〈
W 2

y

〉
along the horizontal and vertical

directions (right ordinate axis) as a function of V/t, for
T/t = 1/20 and N = 96× 96, respectively. Examples of
finite-size scalings [panels (c)-(e) of the same figure] clar-
ify that the chosen system size is large enough to provide
an accurate description of the various observables in the
thermodynamic limit, as results obtained for L = 96 es-
sentially coincide with the extrapolated estimates. The
combination of S(k), ρs/ρ, and their anisotropies allows
for the determination of the quantum phases.

We find that for weak interaction strengths V/t <∼ 2.6
the GS is a homogeneus superfluid (SF) with ρs/ρ > 0,
ρx ' ρy, and S(k) = 0. For 2.6 <∼ V/t <∼ 4.45, however,
both the superfluid fraction and the structure factor are
finite, indicating the presence of a supersolid GS. Sur-
prisingly, in this range of interaction strength we find two
distinct supersolids. Specifically, an isotropic supersolid
(IS) and an anisotropic stripe supersolid (SS) occur for
2.6 <∼ V/t <∼ 4.0 and 4.0 <∼ V/t <∼ 4.45, respectively.
Within the IS phase, S(k) [Fig. 2(a)] takes its maxi-
mum value for k = (0,±kc) and (±kc, 0) (down- and
up-pointing triangles, respectively) with kc = 2π× 7/24;
in IS the superfluid response is isotropic [Fig. 2(b), dia-
monds]. In contrast, in the SS phase the diagonal long-
range order is found along one direction only (i.e., the
y direction in the figure), being drastically suppressed
along the perpendicular one; in addition, the maximum
of the structure factor is found for k = (0,±ks), with
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FIG. 5. Out-of-equilibrium density snapshot for a system
with L = 96, V/t = 4.1 after a quench down to target tem-
perature T/t = 1/20. For this choice of parameters the cor-
responding equilibrium phase is a SS. The size of the dots is
proportional to the averaged occupation of the corresponding
sites.

ks = 2π × 1/3 6= kc, while S(0,±kc) = S(±kc, 0) = 0
[Fig. 2(a), triangles]. Here, the superfluid response be-
comes strongly anisotropic with ρx � ρy, signalling the
formation of superfluid stripes along the x-axis. This
corresponds to a transition to a self-assembled array of
essentially one-dimensional superfluids, which, unexpect-
edly, have larger superfluid density near the phase bound-
ary: ρs/ρ initially increases within the SS phase, before
decreasing again, with increasing V/t.

Finally, for V/t >∼ 4.45 the system loses its super-
fluid character and, although the maximum value of S(k)
still occurs for k = (0,±ks), secondary peaks emerge at
k = (±kc, 0). These latter peaks imply both crystal-
lization along the stripe direction as well as the emer-
gence of weak correlations between particles across dif-
ferent stripes (see below). The resulting GS is a normal
crystal.

We find that different metastable states with entirely
different quantum orders compete in the region of in-
termediate strengths of interactions V/t >∼ 3.0. In or-
der to determine the GS we perform two sets of simu-
lations: namely, starting from the equilibrium configu-
ration at V1/t = 3.7 (V2/t = 5.0) a careful annealing in
the interaction strength is performed with annealing step
0 < ∆V1/t ≤ 0.1 (−0.1 ≤ ∆V2/t < 0). When the desired
target value of V/t is reached the calculation leading to
a lower energy E is taken as the GS. Figure 2(f) shows
the relative energy difference ∆Erel = (E2 − E1)/E1 as
a function of V/t. The change in sign at V/t ' 4.0 sig-
nals the phase transition between the IS and SS phases.
The corresponding sudden changes in crystalline order,
measured by discontinuities of the structure factors in
Fig. 2(a), are consistent with a first order phase transi-
tion between the two supersolids.

The formation of stripes remains favored for larger
V/t: hence, the phase transition from the SS to the stripe

crystal phase at V/t ' 4.45 is resolved by monitoring
the vanishing of superfluidity fraction.

The GS phase diagram of model (1) is summarized
in Fig. 3. The demonstration of the existence of novel
superfluid and insulating stripe crystals, as well as an
exotic supersolid-supersolid quantum phase transitions
due to classical cluster formation in a rather general
model with a simple isotropic interaction are the main
results of this work. Further insight into the discussed
ground states can be obtained from the density maps
in Fig. 3(b)-(e) and the corresponding Green’s function
Gx (Gy) along the x (y) axis [Fig. 4]. As expected,
for small V/t (where the system is a homogeneous SF)
the average occupation number at each site equals the
density ρ [Fig. 3(b)]. Similarly, the Green’s functions
(GF) are equal in the x and y directions at all distances
(i.e., Gx ' Gy), within the statistical error bars. They
become nearly flat at large distances, which is consistent
with the presence of off-diagonal (quasi) long-range
order [Fig. 4(a)]. In the IS phase [Fig. 3(c)] the isotropic
ordered structure formed by clusters of particles coexists
with quantum exchanges and superfluidity. Here, Gx,y

displays a weak power-law decay, indicating off-diagonal
quasi-long-range order, accompanied by oscillations
[Fig. 4(b)], which we find to have a periodicity consistent
with particle exchanges between different clusters,
thus identifying the underlying classical structure.
When stripes are formed in the SS phase, Fig. 3(d),
no density modulations appear along their direction
(i.e., the horizontal one). Gx is found to decay as a
power-law [Fig. 4(c)], consistent with the measured
finite superfluidity along the stripe direction. Long
exchange cycles of identical particles take place almost
exclusively along the stripes, being strongly suppressed
in the perpendicular direction. The overall picture here
is that of a 2D quantum system of quasi 1D superfluids
(i.e. the stripes). In the SC phase the emergence of a
nearly classical cluster-crystalline structure is evident
[Fig. 3(e)]. Here long quantum exchanges are completely
suppressed and clusters (and particles) can only slightly
fluctuate around their equilibrium position due to zero
point motion, implying an exponential decay of the GF’s
in Fig. 4(d), albeit with different slopes in the x and y
directions.

We find that the phases above are robust for density
variations within the range 1/9 < ρ < 1/6, where
clusters I-III appear at low energy for large V/t. In
the Supplementary Material [59] we demonstrate that
they also persist for ρ = 1/6, where only clusters of
type II and III exist for stong interactions, albeit with a
different cluster periodicity (i.e. different kc).

Finally, to exemplify possible out-of-equilibrium sce-
narios that can emerge with imperfect annealing, Fig. 5
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shows a density snapshot obtained when the system is
driven away from equilibrium via a temperature quench.
Here the target temperature is T/t = 1/20 for a value of
V/t at which the equilibrium phase is a SS. The result-
ing snapshot is isotropic rather than anisotropic with a
crystalline structure similar to panel (c) in Fig. 3, where
diagonal long-range order is found for characteristic wave
vectors k = (0,±k∗) and (±k∗, 0) with k∗ 6= kc, ks, and
the value of ρs/ρ is much smaller than the equilibrium
one.

Increasing rc or smoothening the edges of the interac-
tions can effectively result in the inclusion of more sites
in the interaction volume [59]. This can change the num-
ber and type of clusters that appear at low-energy, and
thus the resulting crystal structures. For example, for a
larger rc = 3a and ρ = 1/7 the strong-coupling phase is
a SC not oriented in the x or y-directions. In these cases,
we find that annealing can become increasingly difficult
as equilibration is often dominated by the presence of
many metastable states, typical of long-range models. A
detailed investigation of metastability for model (1) is
presented in [60].

We have demonstrated that stripe supersolid and
crystals may be realized in the ground state of bosonic,
frustration-free cluster-forming Hamiltonians. In
particular, for intermediate interaction strength the
competition between quantum fluctuations and cluster
formation gives rise to a novel supersolid-supersolid
transition between an isotropic cluster supersolid and
an anisotropic stripe supersolid. These results exemplify
the complexities of the determination of quantum phase
diagrams of systems with long-range interactions, in a
regime where calculations are still feasible. Intriguing
out-of-equilibrium scenarios may also emerge and will be
the subject of future investigations [60]. Our predictions
should be of direct interest for experiments with cold
Rydberg-dressed atoms in an optical lattice [61, 62].
More generally, they constitute a step towards the
understanding of how long-range interactions can affect
the properties of ultracold gases.
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Note added – After the acceptance of this work, we
became aware of a recent study [63] showing transitions
between supersolid phases in a different model. However,

as in previous cases (see e.g. [64]), the mechanism behind
the transition is a change in density, rather than cluster
formation induced by the interaction potential at fixed
density.
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