
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Stereodynamical Control of a Quantum Scattering
Resonance in Cold Molecular Collisions

Pablo G. Jambrina, James F. E. Croft, Hua Guo, Mark Brouard, Naduvalath Balakrishnan,
and F. Javier Aoiz

Phys. Rev. Lett. 123, 043401 — Published 26 July 2019
DOI: 10.1103/PhysRevLett.123.043401

http://dx.doi.org/10.1103/PhysRevLett.123.043401


Stereodynamical control of a quantum scattering resonance in cold molecular collisions

Pablo G. Jambrina
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Cold collisions of light molecules are often dominated by a single partial wave resonance. For the
rotational quenching of HD(v = 1, j = 2) by collisions with ground state para-H2, the process is
dominated by a single L = 2 partial wave resonance centered around 0.1 K. Here, we show that this
resonance can be switched on or off simply by appropriate alignment of the HD rotational angular
momentum relative to the initial velocity vector, thereby enabling complete control of the collision
outcome.

At cold (< 1 K) and ultracold (< 1 µK) temperatures
molecules can be prepared in precisely defined quan-
tum states and interrogated with unprecedented preci-
sion. Recent developments in molecule cooling and trap-
ping technologies [1–8] as well as merged or co-expanding
beam techniques [9–14] have made it increasingly possi-
ble to study molecular systems at these low temperatures.
Such systems have even been used in the frontiers of par-
ticle physics,[15] for example in the search for the electric
dipole moment of the electron.[16–18] Cold and ultra-
cold molecules therefore offer an ideal platform on which
to precisely study fundamental aspects of molecular dy-
namics [19–22] such as the role of quantum statistics,[23]
threshold laws,[24] and geometric-phase effects.[25]

One of the basic questions in molecular dynamics is the
dependence of a collision outcome on the relative orien-
tation and/or alignment of the reactants – the stereody-
namics of a collision process.[26–34] At cold and ultracold
temperatures, where collisions proceed through just one
or a few partial waves, their stereodynamics can be stud-
ied at the most fundamental level – the single quantum
state level. In a recent series of papers Perreault et al.
have examined the role that the initial alignment of HD
plays in cold collisions with H2 and D2. [35, 36] Control
over rotational quenching rates was demonstrated, and
subsequent theoretical studies revealed that for certain
states the scattering dynamics of cold HD+o-H2 colli-

sions is determined by a single (L = 2) partial-wave shape
resonance at around 1 K.[37, 38]

While the stereodynamics of atom-diatom collisions
has been explored in previous theoretical studies,[39–45]
collisions between oriented and/or aligned molecules in
cold conditions remain largely unexplored.[46] In this let-
ter, we apply theoretical methods to describe the stereo-
dynamics of inelastic molecule-molecule collisions, specif-
ically, to rotational quenching of HD in cold collisions
with p-H2. In particular, we demonstrate how the stereo-
dynamics of cold molecule-molecule collisions can be de-
termined by a single partial wave shape resonance and
how it can be used to achieve exquisite control of the
collision outcome.

Quantum Mechanical (QM) inelastic scattering cal-
culations were carried out using the time-independent
coupled-channel formalism within the total angular mo-
mentum (TAM) representation of Arthurs and Dal-
garno [47], which has previously been successfully ap-
plied to collisions of H2 with H2 [48–50] and HD. [51–
53] The scattering calculations were performed using a
modified version of the TwoBC code [54, 55] on the full-
dimensional potential surface of Hinde. [56] In the TAM
representation the rotational angular momenta of the
dimers, jH2

and jHD , are coupled to form j12 = jH2
+jHD

which is in turn coupled with the orbital angular momen-
tum L to form the total angular momentum J = L+j12.
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FIG. 1. Integral Cross Section for the HD(v=1,j=2) +
H2(v=0,j=0) inelastic collisions as a function of the collision
energy. Top panel: ICS for ∆j = −1 (solid red line) and
∆j = −2 (solid blue line). The contributions of the L=2
partial wave to the ICS are shown as dashed lines. Middle

and bottom panels: Energy dependence of the s
{2}
0 integral

alignment moment for ∆j = −1 (red) and −2 (blue). Middle
panel shows the overall results and the L = 2 contribution is
shown in the bottom panel.

Scattering calculations are performed separately for each
value of the total angular momentum J and parity I =
(−1)

j
H2

+j
HD

+L
that reflects the inversion symmetry of

the wavefunction,[57] yielding the Scattering (S) matrix,
SJγ,γ′ , labeled by the asymptotic entrance and exit chan-
nels γ and γ′ respectively (where γ ≡ j

HD
j
H2
L j12).

The state-to-state integral cross section (ICS) is given
in terms of the S-matrix by

σα→α′ =
π

k2
α

∑
γ,γ′(2J + 1)|δγ,γ′ − SJγ,γ′ |2

(2jH2
+ 1)(2jHD + 1)

, (1)

where α is the combined molecular state, α ≡
vH2

jH2
v
HD
j
HD

, and k2
α is the square of the wave vector.

From the S-matrix, the scattering amplitudes, fα′Ω′,αΩ

where Ω (Ω′) are the helicities, the projection of j (j′)
into the approach (recoil) direction, were determined us-
ing the procedure described in Ref. 37.

Inelastic collisions of HD(v = 1, j = 2) with p-
H2(v = 0, j = 0) at low collision energies are domi-
nated by ∆j = −1 and −2 transitions in HD leading
to HD(v′ = 1, j′ = 1)+H2 and HD(v′ = 1, j′ = 0)+H2,
respectively. Vibrational de-excitation of HD is energet-
ically allowed, but the ICS for vibrational relaxation is
around 5-6 orders of magnitude smaller at these collision
energies. Energetically, two-quanta rotational excitation
of p-H2 is not allowed.

The energy dependence of the rotational quenching

cross sections is shown in the top panel of Fig. 1. It
is seen that at the lowest energies considered, the ICS
for ∆j = −1 is about a factor of seven larger than for
∆j = −2. Both show the onset of the Wigner threshold

regime below ∼0.01 K (∝ E
−1/2
coll for pure s–wave col-

lisions). The most salient feature for ∆j = −1 is the
presence of a sharp resonance at 0.1 K, where the ICS
increases by almost a factor of four. This is an L = 2
shape resonance, that is caused by a single S-matrix el-
ement corresponding to L = 2 and J = 3 in the TAM
representation. As a consequence of this, the resonance
has a defined parity, in this case the block that does not
include Ω=0, which as we will show later has important
consequences for the collision mechanism. This particu-
lar resonance is not observed for ∆j = −2, even though
most of the scattering also comes from L = 2. Such res-
onances are ubiquitous features of inelastic and reactive
collisions, especially in the cold regime. Here we show
how they can be used to reveal the collision mechanism
and, perhaps more importantly, control the collision out-
come.

The concept of a collision mechanism can be at times
somewhat vague, relying on qualitative rather than on
quantitative results, which can lead to misinterpreta-
tions. To avoid any ambiguities we use the three-vector
correlation k − j

HD
− k′ (where k and k′ define the ap-

proach and the recoil directions) which is especially well-
suited to characterizing collision mechanisms within a
purely quantum-mechanical framework.[58–60] More ex-
plicitly we use the set of reactant polarization param-

eters, s
{k}
q , of rank k and component q = −k, . . . , k,

which define the vector correlation.[61] The most rele-

vant of these parameters is s
{2}
0 , the first alignment mo-

ment of j about the incoming relative velocity. Nega-

tive values of s
{2}
0 indicate a preference for head-on col-

lisions (rotational angular momentum jHD perpendicu-
lar to k), whereas positive values indicate a preference
for side-on collisions (j

HD
mostly parallel to k). The

polarization parameters are calculated from the integra-
tion of the polarization-dependent differential cross sec-

tions, S
(k)
q (θ), over the scattering angle, θ. For the

k − jHD − k′ correlation the S
(k)
q (θ) can be determined

from fα′Ω′,αΩ:[45]

S(k)
q (θ) =

1

(2j
HD

+ 1)(2j
H2

+ 1)
(2)

×
∑

Ω1Ω2

∑
δ

fα′δ,αΩ1
[fα′δ,αΩ2

]
∗ 〈j

HD
Ω1, kq|jHD

Ω2〉

where 〈.., ..|..〉 denotes the Clebsch-Gordan coefficient,
and δ is the combined index δ ≡ ΩH2

Ω′H2
Ω′HD.

The middle panel of Fig. 1 shows s
{2}
0 as a function of

the collision energy for both the ∆j = −1 and −2 tran-
sitions. At the lowest energies, the moment goes to zero,
as required for ultracold collisions. [46] With increas-
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FIG. 2. Integral Cross Section as a function of the collision
energy for ∆j = −1,−2 for different preparations of the HD
internuclear axis, β = 0◦ (red line), β = 90◦ (blue line), and
the magic angle (olive line). The isotropic preparation (in
absence of external alignment) is shown in black. The inset
shows the resonance region in a linear ordinate-axis scale.

ing collision energy, s
{2}
0 takes negative values for both

transitions, showing a preference for head-on encounters.

However, at the proximity of the resonance, s
{2}
0 exhibits

markedly different behavior for the two transitions. It
turns positive for ∆j = −1 peaking at the energy of the
resonance (denoted with a vertical dashed line), while
for ∆j = −2 it remains negative. This shows that the
resonance for ∆j = −1 is associated with a specific mech-
anism that is not shared by the ∆j = −2 transition. At

energies above the resonance, s
{2}
0 again shows the same

trend for both transitions, with a small change around
4.75 K caused by a second resonance (present in both ∆j
transitions) that does not change the mechanism signifi-
cantly.

To unambiguously analyze the effect of the resonance,

the L = 2 contribution to s
{2}
0 is shown in the bottom

panel of Fig. 1. It is calculated by including only the
L = 2 elements of the S-matrix (without considering
their coherences with other L values). Regardless of ∆j,

the L = 2 contribution to s
{2}
0 goes to zero at ultracold

energies, as does σL=2. Moreover, up to 0.5 K, including

the resonance, the sign of the L = 2 contribution to s
{2}
0

is positive (favoring side-on collisions) while it is negative
for higher collision energies. Although at the resonance

the sign of the L=2 contribution to s
{2}
0 is positive for

both ∆j=-1 and -2, its magnitude is much larger for the
former. Since L = 2 collisions dominate around 0.1 K for
both ∆j, these results indicate that the overall change

of s
{2}
0 , and hence of the collision mechanism, is caused

by the resonance and not due to a larger contribution of
L = 2.

The distinct mechanism for the resonance suggests that
it might be possible to suppress its effect by appropriate

state-preparation of the HD rotational angular momen-
tum. [35, 36] The cross sections for different extrinsic
preparations can be computed following the procedure
described in Ref. 45. If HD is prepared in a directed
state, m=0, where m is the magnetic quantum number,
it leads to the alignment of the internuclear axis along the
quantization axis (in the case of Refs. 35, 36 the polariza-
tion vector of the pump and Stokes lasers). By varying
the direction of the laboratory-fixed axis with regard to
the scattering frame it is possible to change the exter-
nal preparations generating different relative geometries
of the reactants prior the collision. We will label the dif-
ferent extrinsic preparations using β and α, where β is
the polar angle between the polarization vector and the
initial relative velocity, and α is the azimuthal angle that
defines the direction of the polarization vector with re-
spect to the k− k′ frame. Accordingly, β = 0◦, and 90◦

imply head-on and side-on collisions, respectively. The
equation that relates the observed differential cross sec-
tion (DCS) for a given preparation (dσβα/dω) of the HD
rotational angular momentum for unpolarized H2 is:[45]

dσβα
dω

=

2j
HD∑

k=0

k∑
q=−k

(2k + 1)
[
S(k)
q (θ)

]∗
A

(k)
0 Ckq(β, α) (3)

where Ckq(β, α) are the modified spherical harmonics,

and the extrinsic moments A
(k)
q define the preparation in

the laboratory frame. [45] The ICS can be obtained by
integrating dσβα/dω over the scattering and the azimuthal
angles, hence depending only on β.

Fig. 2 shows the ICS for different experimentally
achievable extrinsic preparations. The results for ∆j =
−2 are relatively featureless, and are identical to those
shown in Ref. 38. In the Wigner threshold regime, no
control can be attained for the ICS. [46] With increasing
collision energy, however, β = 0◦ always leads to larger
ICSs (by up to a factor of 2). The effect of β = 90◦, and
β = mag (magic angle) preparations is milder, leading
to only small changes in the ICSs with respect to the
unpolarized case.

For ∆j = −1 the situation is similar for energies be-
low the resonance. However, at the resonance the colli-
sion mechanism changes rather abruptly, and the β = 0◦

preparation, which implies head-on collision, leads to a
sudden decrease of the ICS, by close to a factor of 5,
the most extreme effect that could be observed for any
preparation of a sharp j = 2 state. Since the β = 0◦

preparation is the same as collisions with Ω = 0 exclu-
sively, the fact that the S-matrix element that causes the
resonance does not contain Ω = 0 leads to the disappear-
ance of the resonance.

Well above the resonance, at Ecoll ≥0.6 K, the effect
somewhat reverts back to the behavior observed below
the resonance, with β = 0◦ again leading to a slight
increase in the ICS. To sum up, the alignment of j

HD

perpendicular to k slightly enhances the ICS except at
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FIG. 3. Contour plots showing the collision energy depen-
dence of the DCS for the ∆j = −1 transition with different
preparation of the HD rotational angular momentum. The
effect of the resonance is prominent for all preparations ex-
cept for β=0, for which the resonance disappears. Log(Ecol

;K) refers to Log(Ecoll/Eref) where Eref = kB 1 K. S
{2}
0 (θ) for

four representative energies are shown in the Supplementary
Information.

the resonance, where it brings about the suppression of
the resonance as if it were switched off. The effect of
other preparations β = 90◦ and β = mag is relatively
minor and, apparently, does not affect the resonance sig-
nificantly, as far as the ICS is concerned.

Up to this point, we have shown that at the resonance
there is a change in the collision mechanism, which can
be used to control the ICS by changing the prepara-
tion of the HD rotational angular momentum. It has
been demonstrated recently by Perreault et al. that it
is possible to determine the DCS for different reagent
preparations,[35, 36] so we now shift our attention to in-
vestigating how the DCS is affected by state-preparation
of the HD molecule. Fig. 3 shows the DCS as a function

FIG. 4. Integral Cross Section as a function of the collision
energy for ∆j = −1 along with the internuclear axis stereo-
dynamical portraits. The reference frame is defined by the re-
actants approach (k) and the products recoil (k′) directions.
The z axis is parallel to k, the x-z plane is the scattering
plane, and the y axis is parallel to k × k′.

of the scattering angle and collision energy for ∆j = −1.
The isotropic DCS (with unpolarized collision partners)
is shown in panel (a), which features a slight preference
for forward scattering. In particular, the resonance ap-
pears as a sharp “ridge” with a clear preference for for-
ward scattering. For β =0◦, panel (b), the situation
is completely different. First, the resonance completely
vanishes, and at 0.1 K there are no marked changes or
discontinuities in the energy dependence of the DCS. In
addition, the shape of the DCS displays prominent for-
ward and backward peaks irrespective of the collision en-
ergy. At low collision energies there is a third peak in the
DCS that only survives for energies below 0.03 K. There
is also a resonance around Ecoll ∼ 5 K, which unlike
the 0.1 K resonance is slightly enhanced by this external
preparation.

While the β = 90◦ and β = mag preparations have a
minor effect on the ICS, the polarization of jHD has a
dramatic effect on the shape of the DCS. Fig. 3 (panels
(c)–(f)) shows the effect of β = 90◦ and β = mag and
α = 0◦, 180◦ preparations on the DCS. The shape and
magnitude of the DCS for all these cases differ from each
other and from the isotropic case. Moreover, all of them
show distinct features at the resonance. For β = 90◦, α =
0, 90◦, the DCS at the resonance has two prominent peaks
at around 30◦ and 150◦, while for β = mag and α = 0◦

there is a strong enhancement of forward scattering at the
resonance. While for all non-zero β values the resonance
at 0.1 K is present, its angular distribution is exquisitely
sensitive to β and α, showing that the resonance can
be used to control not just the magnitude of the ICS,
but also the scattering direction. [32] This provides a
powerful tool to elucidate stereodynamics of resonance-
mediated collisions and fine-tune calculated interaction
potentials against controlled experiments.

To gain further insight into the reaction mechanism we
analyze the remaining polarization parameters besides
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s
{2}
0 . For initial j = 2, eight independent parameters

contribute to the alignment of the internuclear axis distri-
bution, depicted as “stereodynamical portraits” [62, 63]
for a given polarization of the rotational angular momen-
tum. These are 3D plots showing the probability density
function of the HD internuclear axis leading to a specific
state. Figure 4 presents the stereodynamical portraits
associated with the internuclear axis of HD for ∆j = −1.
At 10−3 K, the HD internuclear axis is contained in the
scattering plane, although it does not show a significant
preference towards head-on or side-on encounters. Just
below the resonance it starts to show a strong prefer-
ence towards head-on collisions (typically associated with
small impact parameters). A sudden change of the mech-
anism occurs at the resonance, with a clear preference for
side-on encounters (internuclear axis perpendicular to z).
Just above the resonance the internuclear axis remains
perpendicular to the approach direction, but preferen-
tially contained in the xy plane. With increasing collision
energy, the internuclear axis is no longer aligned along or
perpendicular to z.

Altogether, these results demonstrate that, in the cold-
energy regime, inelastic collisions between HD(v=1,j=2)
and p-H2 are controlled by a resonance at 0.1 K that
causes profound changes to the reaction mechanism that
favors side-on collisions, typically associated with large
impact parameters, over head-on collisions that would
have been preferred if the resonance were absent. This
sudden change in mechanism permits exquisite control
of the collision outcome by using different preparations
of the HD internuclear axis, and makes it possible to
switch-off the resonance altogether. The effect of the ini-
tial HD alignment becomes most evident in the DCS,
which changes dramatically for the alternative prepa-
rations investigated. Energy resolved measurements of
state-resolved angular distributions of HD in collisions
with p-H2 would be desirable to validate these predic-
tions. Our findings can be generalized to other systems
and, indeed, some degree of control may be expected for
other resonances in the cold regime.
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