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Nöthnitzer Strasse 38, 01187 Dresden, Germany
2Department of Physics, QUEST Center and Institute of Nanotechnology

and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
3Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

4Purdue Quantum Science and Engineering Institute,

Purdue University, West Lafayette, Indiana 47907, USA

(Dated: May 28, 2019)

The molecular association process in a thermal gas of 85Rb is investigated where the effects of the
envelope of the radio-frequency field are taken into account. For experimentally relevant parameters
our analysis shows that with increasing pulse length the corresponding molecular conversion effi-
ciency exhibits low-frequency interference fringes which are robust under thermal averaging over a
wide range of temperatures. This dynamical interference phenomenon is attributed to Stückelberg
phase accumulation between the low-energy continuum states and the dressed molecular state which
exhibits a shift proportional to the envelope of the radio-frequency pulse intensity.
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External fields are widely used in order to probe, tune and control various aspects of atomic matter. For example,
in the field of ultracold atomic physics dc magnetic fields constitute the main experimental means for the creation
and manipulation of molecules via Feshbach resonances [1–3]. Techniques involving radio-frequency (RF) magnetic
fields are of exceptional importance since they are highly adjustable in experiments [4, 5]. Indeed, the additional
magnetic RF field modulation enables the investigation of cold molecule formation [6–8] or heteronuclear associa-
tion/dissociation processes in a microgravity environment [9], association of Efimov trimers [10–13] or manipulation
of Feshbach collisions [14–16]. Beyond cold physics, external fields are also used in ultrafast physics where short laser
pulses probe photoionization processes [17]. In such systems the pulse envelope plays a crucial role since it induces a
time-dependent AC-Stark shift of the energy levels of the system whereas the light-pulse derivatives yield a dynamic
interference in photoionization cross-sections [18–25], [26].
In this letter, the RF-induced association process in an ultracold thermal gas is investigated and it is shown that

the RF field envelope plays a crucial role. This allows us to extend the concept of dynamical interference in strong
field ionization into the realm of ultracold physics and to explore its impact on the production of cold molecules.
In Ref.[7] experimental evidences suggested that RF association in a thermal gas can exhibit Rabi-like oscillations
in the molecular conversion efficiency (MCE) as a function of the duration of the RF field. On the other hand,
the corresponding theoretical studies in Ref.[6] show that in this range of parameters any coherence in the MCE is
completely smeared out by thermal averaging. Evidently, these studies still pose an intriguing question for the RF
association processes in thermal gases: Under what conditions does the RF molecule formation display interference
fringes that survive thermal averaging? Our study tackles this question: a gas of 85Rb atoms with density n = 1011/cm3

is considered for which the gas temperature varies from T = 20nK up to T = 50nK , and for an RF field driving
frequency that can associate continuum states near the dissociation threshold. In this temperature range and density,
our analysis predicts that a strong pulsed RF field induces dynamic interference, which remains robustly observable
in the MCE even after thermal averaging. In the limit of weak pulses a monotonic increase of the MCE with pulse
length is found, consistent with previous theory [6].
Our prototype two-body system consists of 85Rb atoms in the presence of a broad Feshbach resonance located at

B0 = 155G. The corresponding two-body collisions can be modeled by an effective single channel Hamiltonian where
the low collision energies involve s-waves only. In the center-of-mass frame, the two cold atoms experience an RF
pulse that can associate them into a molecular state. This process is addressed by the following time-dependent model
Hamiltonian in the relative degrees of freedom,

H(r, t) = T − V0θ(r0 − r) + η(r, t) cos(ωt), (1)

where θ(⋅) is the step function and T represents the two-body kinetic energy operator. The s-wave interactions are
modeled via a spherical well of depth −V0 (with V0 > 0) and range r0. The third term of H(r, t) refers to the RF pulse
with an angular frequency ω and pulse envelope η(r, t) = η0θ(r0 − r)χ(t), where the explicit time-dependent factor
χ(t) reads

χ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin2[π
2
( t
τ0
)] 0 ≤ t < τ0

1 τ0 ≤ t < τc + τ0
sin2[π

2
( t−τc

τ0
)] τc + τ0 ≤ t ≤ τc + 2τ0.

(2)

Here η0 is the strength of the pulse, τ0 indicates the turn on/off time of the pulse and τc refers to the time interval
when the pulse strength is constant.
The adopted field-free Hamiltonian possesses only one bound state near the threshold, with energyEb/h = 10.108kHz

[for details see [27]]. For the pulse we consider a driving frequency of the RF field at ω/2π = 10.11kHz which resonantly
couples the molecular state with the near-threshold continuum states.
Fig.1(a) illustrates the initial thermal gas of 85Rb atoms exposed to an RF pulse of duration τc, after which a

fraction of the gas is converted into molecules. Modeled with the Hamiltonian shown in Eq.(1) the two particles are
initially in a continuum state and the pulse induces free-to-bound and free-to-free transitions. The time-dependent
wavefunction is expanded into field-free Hamiltonian eigenstates, namely ∣ψ(t)⟩ = ⨋α ∣α⟩ e−iEαtCα(t), where the in-
tegration (summation) runs over energy-normalized continuum (bound) states which asymptotically obey standing
wave boundary conditions. Note that α represents a collective index containing the relevant quantum numbers. This
basis converts the time-dependent Schrödinger equation into a set of first order coupled equations

ih̵∂tCb(t) = Γbb(t)Cb(t) + ∫ dǫΓbǫ(t)ei(Eb−ǫ)t/h̵Cǫ(t)
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Figure 1. (Color online) (a) A schematic figure shows a thermal 85Rb gas exhibiting molecular association after the RF pulse,
where the blue line indicates the envelope of the pulse with plateau time τc. (b) An illustration of the time evolution of the
diabatic energies during the pulse in the rotating-wave approximation, where E∗R(t) (red solid line) refers to the shifted dressed
bound state energy that saturates to Eb + h̵ω at the beginning and end of the pulse. Ein (blue dashed line) represents the
energy of a continuum state. The green and purple dashed-doted lines depict the two different pathways that interfere at the
end of the pulse. (c) and (d) PMCE(τc) from Eq.(4) as a function of the plateau time τc, for three different temperatures, 20nK
(blue), 35nK (orange) and 50nK (green), where the maximum of the pulse envelope is η0/h = 179.25kHz and η0/h = 33.349kHz
, respectively. The density of the thermal gas is n = 1011/cm3).

ih̵∂tCǫ(t) = Γǫb(t)e−i(Eb−ǫ)t/h̵Cb(t) + ∫ dǫ′Γǫǫ′(t)ei(ǫ−ǫ′)t/h̵Cǫ′(t), (3)

where Γij(t) = cos(ωt) ⟨i∣η(r, t)∣j⟩ and there is no summation over bound states since the Hamiltonian in Eq.(1) has
only one. Eq.(3) is numerically solved following Ref.[28], with a box-state discretization of the continuum [for details
see [29]].

Due to the thermal energy distribution, there is no preferred initial continuum state, and therefore the transition
probability density ∣Cb(t)∣2 to occupy the molecular state must be thermally averaged over a Maxwell-Boltzmann
(MB) distribution of the initial continuum state energies to compute the fraction of atoms converted into molecules.
Calculated after the pulse at time tf = τc + 2τ0 the MCE reads as a function of plateau length τc [6]:

PMCE(τc) ≡ 2Nm

N
= 2nλ3T ∫

∞

0
dEine

−
Ein

kBT ∣Cb(tf)∣2, (4)

with Boltzmann constant kB , temperature T , density n, and the thermal de Broglie wave length λT =
√
2πh̵/(πmRbkBT ).

Note that Eq.(4) is valid for Nm < N/2. In the numerical solution of the TDSE, a box discretized continuum state
is chosen as an initial state and at the end of the pulse the corresponding box-normalized transition amplitude to
the bound state is rescaled by the energy-normalization constant. The energy-normalized ∣Cb(tf)∣2 is then thermally
averaged for an ensemble of 2800 different initial states sampling an energy interval Ein = [0, 0.97h̵ω].
For a thermal gas of 85Rb atoms with density n = 1011/cm3, Figs.1(c) and (d) depict the numerically calculated

PMCE(τc) for different pulse plateau times τc and for three different temperatures: T = 20 nK (blue line), T = 35nK
(orange line) and T = 50nK (green line). The peak of pulse envelope is η0/h = 179.25kHz in Fig.1(c) and η0/h =
33.349kHz in Fig.1(d) and the ramp on/off time of the pulse is τ0 = 0.65 2π/ω (with ω/2π = 10.11kHz) for both
panels. Note that this particular choice of τ0 is comparable to the response time scale τb = h̵/Eb of the system and
ensures that the resulting dynamics is in the non-adiabatic regime. Figs.1(c) and (d) demonstrate striking qualitative
differences in the MCE as the pulse strength η0 varies. For strong pulses, Fig.1(c) shows that as τc increases the
molecular formation displays two types of oscillatory behavior: a fast one which has a frequency equal to ω/2π and
a slow one with frequency ν = 0.532kHz. We observe that the interference fringes survive the thermal averaging
process which would usually tend to smear out coherence features. Indeed, the MCE for a weak pulse (Fig.1(d))
does not exhibit any interference, analogous to the observations in Ref.[6]. Moreover, for weak pulses, Fig.1(d), the
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Figure 2. (Color online) (a) and (c) The molecule conversion fraction obtained by Eqs.(4) and (5) where the strength of the
pulse, the temperatures and the density of the thermal gas are the same as in Fig.1(c) and (d), respectively. (b) and (d) depict
the integrand of Eq.(4) in a.u. at T = 20 nK where pulse’s strength is η0/h = 179.25kHz and η0/h = 33.349kHz , respectively.

molecular conversion increases monotonically with the pulse duration, whereas in the case of a strong pulse, Fig.1(c),
the molecule formation probability saturates already in the same range of times τc.
To understand the physical origin of these qualitative differences in the molecular association with changing intensity

a simplified model is helpful. Employing the rotating-wave approximation in Eq.(3), where the terms Γbb(t) and Γǫǫ′(t)
are neglected, yields a set of time-dependent equations that can be decoupled after we neglect high-order terms of the
form ∂nt [χ(t)eiEbt/h̵Cb(t)] with n ≥ 1. Then the transition probability density to the molecular bound state from an
initial continuum state with energy Ein reads

∣Cb(t)∣2 = η20 ∣Wb,Ein
∣2

4h̵2
∣∫ t

dt′χ(t′)e− γJ(t,t′)
2h̵

+ i
h̵
Φ(t′)∣2 (5a)

with

Φ(t) = ∫ t

0
dt′(E∗R(t′) −Ein), E∗R(t) = Eb + h̵ω + η

2
0

4
∆χ2(t) . (5b)

Here Wb,Ein
= Γb,Ein

(t)/η0 cos(ωt) is the bare coupling matrix element of the bound state with the initial energy-

normalized continuum state and J(t, t′) = ∫ t

t′ dt
′′χ2(t′′). γ = 0.5π∣Wb,Eb+h̵ω ∣2η20 denotes the decay of the bound state

into the continuum at energy Ein = Eb + h̵ω with Wb,Eb+h̵ω = Γb,Eb+h̵ω(t)/η0 cos(ωt). Φ(t) is the phase accumulated

between the continuum state with energy Ein and the energy E∗R(t) of the shifted dressed bound state. The shift
η2

0

4
∆

is given by
η2

0

4
∆ =

η2

0

4
P ∫ dE ∣WbE ∣

2

E−Eb−h̵ω
(the symbol P ∫ indicates the principal value integral) and depends quadratically

on the strength of pulse. Consequently, E∗R(t) evolves with the square of the pulse envelope analogous to the AC-Stark
shift [19].
In order to gain physical insight, the time evolution of E∗R(t) in the diabatic picture is illustrated in Fig.1(b) whereas

the continuum is denoted by the gray shaded area. Note that at the beginning and at the end of the pulse E∗R(t)
becomes equal to the bare dressed bound energy Eb + h̵ω with ∆ = 0. The blue dashed line in Fig.1(b) denotes the
energy Ein of a selected initial continuum state. As just discussed, the dressed bound state energy E∗R(t) follows the
pulse intensity envelope, and for a sufficiently strong pulse this dressed state can cross the dissociation threshold, as
is the case in Fig.1(c). However, for weak pulses, cf. Fig.1(d), E∗R(t) remains in the continuum throughout the pulse.
This behavior can be intuitively understood in the context of level repulsion where during the pulse the continuum
states push the dressed bound state to lower energies; hence for a strong pulse this repulsion yields an intensity-
shifted, dressed bound state energy that moves below the threshold. In addition, Fig.1(b) demonstrates signatures of
Stückelberg physics in the system: during the turn on/off of the pulse non-adiabatic couplings are induced between the
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Figure 3. (Color online) PMCE(τc)/n as a function of the temperature T and the pulse duration τc. The black dashed (solid)
lines depict the maximum (minimum) of the MCE obtained by Eq.(6).

dressed bound and continuum state with energy Ein, which translates into a two-pathway interference. In Fig.1(b) the
purple dashed-dotted (green dotted) line denotes the path via the shifted dressed bound (Ein) state. This two-pathway
interference yields the phase difference Eq. (5b) in the wavefunction. The emerging picture is analogous to electron
dynamics in ionization processes described with pulse envelope dependent wavefunctions [18] presented in [19, 20]
where the photoelectron experiences two non-adiabatic ionization bursts during the turn on/off of an ultrashort pulse.
The derivatives of the pulse envelope induce a two-pathway interference in time resulting in Stückelberg oscillations
of the differential ionization cross-section as a function of the pulse length at a given electron energy.

The Stückelberg phase in the probability density ∣Cb(tf)∣2 plays a crucial role in modulating the MCE. More specif-
ically, in Eq.(4) ∣Cb(tf)∣2 is averaged over a MB distribution of initial continuum energies. Thereby, the corresponding
Stückelberg phases are mixed incoherently suppressing interference fringes in the MCE. Indeed, this behavior is
observed in the Fig.1(d) where the strength of the pulse is weak and throughout the pulse E∗R(t) lies within the
continuum. In contrast, for strong pulses [see Fig.1(c)], where the shifted dressed bound state can cross the threshold,
the Stückelberg phase between E∗R(t) and zero continuum energy,i.e. ǫ = 0, survives the thermal average and yields a
low frequency oscillation in the molecule MCE, as we will show.

Figs.2 (a) and (c) show the MCE obtained by Eqs.(4) and (5) for a strong (η0/h = 179.25kHz) and weak (η0/h =
33.349kHz) pulse, respectively. Note that the range of temperatures, turn on/off time τ0, driving frequency and

density are the same as in Figs.1(c) and (d). In addition, for the shift
η2

0

4
∆ used in Eq.(5) the Principal value integral

is evaluated over the same range of continuum energies that is used in the corresponding numerical calculations. The
MCEs shown in Figs.2(a) and (c) exhibit the same qualitative differences as discussed for Figs.1(c) and (d). More
specifically, the MCE for strong pulses in Fig.2(a) saturates at a smaller pulse length than in Fig.2(c). According
to Eq.(5), this occurs due to the decay γ which is proportional to η20 . Hence, a strong pulse renders the saturation
of the MCE faster than a weak pulses. Also, Fig.2(a) exhibits only the low-frequency oscillations attributed to
Stückelberg physics whereas the high-frequency ones [see Fig.1(c)] are absent. This implies that the physical origin of
high frequency interference fringes is associated with higher order photon processes since in Fig.2(a) the rotating-wave
approximation is employed where counter rotating-wave and the Γbb(t) terms as well as n > 1-photon processes are
neglected. Note that due to the rotating-wave approximation the magnitude of the MCE in Figs.2(a) and (c) is
higher than in the corresponding Figs.1(c) and (d). Finally, Fig.2(b) and (d) illustrate the integrand of MCE in a.u.
[see Eq.(4)] at T = 20nK as a function of the pulse’s duration and the scaled energy of the initial continuum states,
i.e. Ein/h̵ω. For strong pulses Fig.2(b) demonstrates the interference fringes due to the Stückelberg phases between
different initial continuum states and the shifted dressed bound one where the MB factors are considered. In contrast,
for weak pulses, see Fig.2(d), the MB weights suppress the interference features of the probability density ∣Cb(tf)∣2
yielding a coherence-free MCE. Panels (b, d) demonstrate that in the MCE only continuum states with energies
Ein = [0, 0.1h̵ω] contribute.
To address the frequency of the slow oscillations in Fig.1(b) and its dependence on temperature, Eq.(5) can be

further simplified by considering a square pulse with the same FWHM as in Eq.(2). In addition, in the temperature
range of interest the coupling ∣Wb,Ein

∣2 in Eq.(5) is approximated by Wigner’s threshold law, ∣Wb,Ein
∣2 ≈ ∣Wb,0∣2√Ein

where Wb,0 is the coupling of the bound state with the zero-energy continuum state. Under these considerations, one
arrives at an analytical expression of MCE in terms of the phase φτβ = τ

eff
c /h̵β and the energy ratio ρβε = ∣ε∗R∣β,



6

PMCE(τeffc ) = nλ3T η20 ∣Wb,0∣2√πβ
ρβε(3 + 2ρβε) (1 − g cosφ), (6a)

φ = φτβρβε + arctan[φτβ]/2 + arctan[2φτβρβε
3 + 2ρβε ] , (6b)

where β = 1/kBT , τeffc = τc + τ0, ε∗R = Eb + h̵ω +∆η
2

0

4
and g = (1 + φ2τβ)− 1

4 [1 + ( 2φτβρβε

3+2ρβε
)2]− 1

2 .

Evidently, Eq.(6b) captures the origin of the slow oscillations in the MCE which emerge from the thermally averaged
Stückelberg phase φ = φ(τeffc , ε∗R, T ). The solid (dashed) lines in Fig.3 show minima (maxima) of the MCE as predicted
by Eq.(6b), with the full numerically obtained PMCE(τc)/n in the background. One sees that the extrema approach
constant values at high temperatures, i.e. at T ≫ Ts with Ts = h̵/τeffc kB , corresponding to an asymptotic frequency
νT≫Ts

≈ ∣ε∗R∣/2π according to Eq.(6b). Consequently, the high-T oscillations are due to the Stückelberg phase between
the intensity-shifted dressed bound state and the zero energy continuum state. The minimum pulse strength which
yields Stückelberg interference is η0 > 2

√−(Eb + h̵ω)/∆. For the parameters of Fig.1(c) we obtain νT≫Ts
≈ 0.515kHz

which agrees with the ν = 0.532kHz of Fig.1(c).

However, in the low-T regime Eq.(6b) gives νT≪Ts
≈ (∣ε∗R∣ + kBT /2)/2π. In this limit, the MB distribution is so

narrow that only the continuum state with the most probable energy, Ein = kBT /2, contributes in the MCE. Therefore,
νT≪Ts

depends only on the Stückelberg phase between the most probable continuum state energy and ε∗R. Finally, g

in Eq. (6b) controls the contrast in the oscillations. For high-T it behaves as gT≫Ts
≈ 3
√
h̵/(kBTτeffc ) demonstrating

that the contrast decreases for increasing T as apparent from Fig.1(c).

Conclusions. – For pulsed RF association of Feshbach molecules in a thermal gas of 85Rb atoms we have demon-
strated non-adiabatic effects of the pulse envelope so far only known from ionization with ultrashort pulses [20]. More
specifically, the MCE shows interference fringes for strong RF pulses as a function of pulse length that can survive
the incoherent thermal averaging in contrast to previous studies [6]. We have worked out the dependencies of these
Stückelberg oscillations on the temperature of the thermal gas and the pulse length. In the limit of high temperatures,
the oscillation frequency depends only on the Stückelberg phase between the zero energy continuum and the energy
of the intensity-shifted dressed bound state, whereas for small temperatures the threshold energy gets replaced by the
most probable (thermal) energy. In addition, the MCE exhibits fast oscillations with the RF field frequency. They
are associated with higher order photon processes but will be challenging to resolve them experimentally.

The Stückelberg oscillations, however, should be observable in a thermal gas of 85Rb atoms of density n = 1011/cm3

with a Feshbach field around B = 156.9G producing the same scattering length as in our study. The RF-pulse which
is used in our calculations can be experimentally implemented by an additional magnetic field of strength Bm ≈ 0.57G
modulated with ω = 2π × 10.11kHz. A promising direction where dynamical interferences are crucial is in molecular
photoassociation processes driven by chirped short-pulses [30]. Extending the present concept into such systems
including the continuum may yield non-trivial effects as was shown in the strong-field physics where chirped pulses
can control the ionization [31].

Acknowledgments - This work has been supported in part by the U.S. National Science Foundation grant No.
PHY-1607180, the Israel Science Foundation (Grant No. 1340/16) and the United States-Israel Binational Science
Foundation (BSF, Grant No. 2012504). The numerical calculations have been performed using NSF XSEDE Resource
Allocation No. TG-PHY150003.

∗ pgiannak@pks.mpg.de
† lev.khaykovich@biu.ac.il
‡ rost@pks.mpg.de
§ chgreene@purdue.edu

[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[2] W. C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976).
[3] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114 (1993).
[4] A. M. Kaufman, R. P. Anderson, T. M. Hanna, E. Tiesinga, P. S. Julienne, and D. S. Hall, Phys. Rev. A 80, 050701

(2009).
[5] T. V. Tscherbul, T. Calarco, I. Lesanovsky, R. V. Krems, A. Dalgarno, and J. Schmiedmayer, Phys. Rev. A 81, 050701

(2010).
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