
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Oriented Polar Molecules Trapped in Cold Helium
Nanodropets: Electrostatic Deflection, Size Separation, and

Charge Migration
John W. Niman, Benjamin S. Kamerin, Daniel J. Merthe, Lorenz Kranabetter, and Vitaly V.

Kresin
Phys. Rev. Lett. 123, 043203 — Published 24 July 2019

DOI: 10.1103/PhysRevLett.123.043203

http://dx.doi.org/10.1103/PhysRevLett.123.043203


1 
 

Oriented polar molecules trapped in cold helium nanodropets: 

Electrostatic deflection, size separation, and charge migration 

 

John W. Niman1, Benjamin S. üamerin1, Daniel J. Merthe1*, Lorenz Kranabetter2, and Vitaly V. Kresin1 

1Department of Physics and Astronomy, University of Southern California,  

Los Angeles, CA 90089-0484, USA 

2Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 

Technikerstr. 25, A-6020 Innsbruck, Austria 

 

Helium nanodroplets doped with polar molecules are studied by electrostatic deflection. This 

broadly applicable method allows even polyatomic molecules to attain sub-Kelvin temperatures 

and nearly full orientation in the field. The resulting intense force from the field gradient strongly 

deflects even droplets with tens of thousands of atoms, the most massive neutral systems studied 

by beam “deflectometry.” We use the deflections to extract droplet size distributions. Moreover, 

since each host droplet deflects according to its mass, spatial filtering of the deflected beam 

translates into size filtering of neutral fragile nanodroplets. As an example, we measure the 

dopant ionization probability as a function of droplet radius and determine the mean free path for 

charge hopping through the helium matrix. The technique will enable separation of doped and 

neat nanodroplets and size-dependent spectroscopic studies. 
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Introduction.— If the internal and relative motion of molecules is cooled into the sub-

Kelvin range, it becomes possible to observe and steer their reactions with precision, to 

determine their physical parameters and structures with high accuracy, and to use external fields 

to finely control their motion and orientation [1-4].  For example, buffer-gas cooling [5] can be 

employed as an entryway to electrostatic guiding and ultracold trapping [6,7], merged beams 

enable exploration of chemical reactions in the quantum regime [8], and Stark deflection of small 

molecules in a supersonic beam can be used to spatially separate their low rotational states and 

conformers [9]. 

While high level of control has been demonstrated for individual small molecules, 

pursuing it for larger polyatomic systems becomes increasingly demanding [10].  Their rotational 

spectra are more congested, their degrees of freedom are less efficiently and uniformly cooled by 

nozzle expansion [10,11], and their higher masses reduce the deflection. 

A powerful tool to cool and study molecules of a wide range of sizes is “helium 

nanodroplet isolation” [12-16].  Molecules are entrapped and transported by a beam of 4HeN 

nanodroplets generated by expansion of helium gas through a cryogenic nozzle.  Nanodroplets 

cool by evaporation upon exiting the nozzle, reaching an internal temperature of only T0=370 

mK and turning superfluid.  This temperature is set by the surface binding energy of helium 

atoms [17,18] and has been verified, as has the onset of superfluidity, by rotational spectroscopy 

of entrapped molecules [12].  When the droplet beam passes through one or more vapor-filled 

cells, atoms and molecules are readily picked up, cooled by heat transfer to the helium matrix 

(evaporation of surface helium atoms promptly brings the complex back to T0), and carried along 

by the droplet beam. 
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This method is unique in being applicable to a variety of molecules and atoms: essentially 

all that is required for embedding is the availability of ~10-6-10-4 mbar of vapor.  Its other key 

feature is that it cools all the degrees of freedom of the dopants and ensures that only their lowest 

vibrational, and in some cases even rotational, levels are occupied.  Quantum effects in 

bimolecular reactions can already become pronounced at T0 (e.g., [19]) and may remain 

undisrupted by the viscosity-free superfluid matrix.  Furthermore, by using sequential pickup it is 

possible to co-embed multiple (identical or distinct) atoms or molecules in order to explore their 

interactions and to generate novel or metastable complexes that would be unobtainable by other 

means. 

In the context of control and manipulation by external fields, consider nanodroplet 

embedding of polar molecules.  The salient fact is that by cooling to T0 in this superfluid 

environment, they become cold enough to strongly (often almost fully) orient themselves along 

an applied static electric field [20].  Their rotations transform into “pendular” states, employed in 

landmark spectroscopic studies [34] (see also the recent review [35]).  Molecular alignment 

effects within helium nanodroplets also were recently demonstrated using short laser pulses [36]. 

Here we subject these systems to the method of electrostatic deflection [9,37-39].  A 

doped nanodroplet beam passes through an inhomogeneous electric field and its resulting 

deflection is measured with high accuracy.  This attractiveness of such a measurement is that it 

can be performed using a broad array of molecules (diatomic, polyatomic, complex, 

agglomerates) and directly yields quantitative observables, without needing to refer to a 

potentially complex spectroscopic analysis. 

However, two potential problems must be considered.  First, deflecting neutral droplets 

by a measurable amount may appear simply unworkable.  Indeed, in typical experiments on 
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beams of individual polar molecules or clusters the deflection is at most by a few milliradians, 

more commonly a fraction of that (translating into millimeters, or fractions thereof, displacement 

at the detector).  Consequently, loading a molecule with a massive coat of barely polarizable 

helium ought to result in undetectable deflections.  Second, the nanodroplets are not identical.  

Their size distribution is generally log-normal, as is typical of particle growth processes, with a 

mean N  that can be shifted by varying the expansion conditions.  Can this hinder a deflection 

experiment?  

We report on two principal results.  First, we demonstrate that electrostatic deflection of 

nanodroplets doped with polar molecules is not merely measurable, as we saw in [40], but turns 

out to be remarkably strong.  This is due to the aforementioned orientation effect: when the 

dipoles’ rotational motion is frozen out and they point along the field axis, the resulting great 

increase in the deflecting force can easily compensate for the additional helium mass.  Such a 

robust effect, in combination with the fact that these may be the most massive (tens of thousands 

of Daltons) neutral beams subjected to “molecular deflectometry” to date, is noteworthy.  The 

magnitude of the deflections implies that they can be employed for accurate measurements of the 

dipole moments of complex molecules and to segregation of doped and undoped nanodroplets. 

Second, we demonstrate that instead of hindering deflection analysis, droplet size spread 

can be turned into an informative resource.  We show that deflection measurements can be 

employed to calibrate the nanodroplet size distribution.  Even more valuably, deflection can be 

used to achieve droplet mass filtering, by spatially dispersing the nanodroplets according to their 

size.  This establishes a novel way to perform spectroscopic experiments on neutral nanodroplets 

as a function of size.  As an application and illustration of this method, we study the droplet size 
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dependence of dopant ionization probabilities and determine the mean free path for the migration 

of positive charge (He+ hole) through the liquid helium matrix.   

Method.— A supersonic nanodroplet jet is generated by expanding He gas at 80 bar 

pressure through a cryogenic nozzle, and passes through a pick-up cell positioned downstream.  

This methodology is described in the cited reviews, see also [40].  Dopants chosen for the 

present work are dimethyl sulfoxide (CH3)2SO (“DMSO,” p=4.0 Debye) and CsI (p=11.6 D).  

The beam is subsequently collimated by a 0.25 mm × 1.25 mm slit and travels through the 2.5 

mm gap between two 15 cm-long electrodes which create an inhomogeneous electric field of the 

“two-wire” geometry [41-43].  As formulated above, the field orients the polar molecule while 

its gradient exerts a strong deflecting force on this oriented dipole.  The field and gradient 

strengths range up to ≈85 kV/cm and 350 kV/cm2, respectively. 

Approximately 1.3 m past the electrodes the beam enters an electron-impact ionizer (set 

to 90 eV) through a 0.25 mm-wide slit, and the resultant ions are detected by a quadrupole mass 

analyzer.  The arrival of a doped nanodroplet is registered by setting the analyzer to one of the 

characteristic fragment peaks of the dopant [44].  In order to isolate the beam-carried signal, the 

analyzer’s output is read via a lock-in amplifier synchronized with a rotating wheel chopper.  

Additionally, the phase delay between the chopper and analyzer outputs yields the beam velocity 

v (which rises from 375 m/s at 15 K nozzle temperature to 415 m/s at 19 K).  Importantly for 

deflection measurements, the velocity spread is very narrow, 1-1.5% [45,46].  The deflection 

angle of a nanodroplet is the ratio of the sideways impulse it receives while traversing the field, 

FzΔt∝〈pz〉(∂Ez/∂z)v-1, to its original forward momentum, mv.  Since the field gradient is 
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proportional to the deflection plate voltage V, the droplet’s deflection is d=C〈pz〉V/(mv2), where 

C is a constant calculated from the apparatus geometry. 

In monitoring the dopant peak in the mass spectrum, one needs to be certain that it is not 

a fragment of a larger agglomerate deriving from the pick-up of multiple molecules.  The 

probability of embedding k dopants is approximately Poissonian [12]: exp( ) / !k
kP k k k= − . 

Here 〈k〉 is the average number of pick-up collisions, proportional to the vapor density.  

Therefore the cell vapor pressure must be low enough for Pk>1 to remain small.  For DMSO we 

adjust it to produce a usable monomer signal (we use the 78 amu ion peak for deflection 

measurements) while minimizing the corresponding dimer signal (156 amu).  For CsI the 

procedure is analogous, reinforced by the fact that the Cs+ peak which we use predominantly 

derives from dissociative ionization of the CsI monomer but not of larger clusters [47].  

Deflections.— Beam profiles in the detector plane are recorded by measuring the 

intensity of the chosen ion peak as a function of the ionizer entrance slit position. 

Our initiatory deflection measurements scanned this entrance slit in front of the 

quadrupole’s ionizer and suggested beam deflections on the order of a few tenths of a mrad 

(translating into shifts of a few tenths of a mm in our apparatus) [40].  This was already 

substantial, but further examination revealed that the actual deflections were considerably larger: 

we discovered that they extended all the way to the edge of the ionizer’s entrance aperture and 

were artificially clipped there.  In order to accommodate such large displacements we now fix 

the slit in the middle of the aperture and place the entire detector chamber onto a precision linear 

slide.  This enables us to obtain accurate beam profiles extending as far as ±20 mm (16 mrad) 

from the central axis, see Figs. 1(a,b).  These figures show the deflections for a diatomic and a 
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polyatomic dopant, both cooled to 0.37 K by immersion in the superfluid droplet, confirming the 

broad applicability of the technique. 

Such profiles contain a wealth of information.  For example, Fig. 1(c) shows that the 

average deflection is proportional to the deflector voltage.  This is fundamentally different from 

the linear susceptibility regime where 〈pz〉∝Ez and therefore d∝Ez·(∂Ez/∂z)∝V2, as commonly 

observed in cluster beam experiments [37-39].  The dependence plotted here implies saturated 

susceptibility and provides unambiguous proof that the dopant dipoles are strongly oriented by 

the applied field [20]. 

Nanodroplet sizes and size filtering.— Each measured profile represents the convolution 

of single nanodroplet deflections with (a) the distribution of droplet masses, (b) the distribution 

of their pick-up and ionization cross sections, and (c) the shape of the original undeflected beam.  

By fitting these profiles to a simulation of the pick-up, deflection, and detection steps [20], we 

deduce the mean N  and the width ΔN of the droplet size distribution produced by the nozzle.  

As shown in Fig. 1(d), these parameters are in excellent agreement with the standard literature 

values [12,48].  This both validates our analysis and extends the droplet size calibration curve. 

An inspection of Figs. 1(a,b) reveals that the electric field not only shifts the doped 

droplet beam profile, but also makes it asymmetric.  The reason is that smaller, lighter droplets 

deflect stronger than larger, heavier ones.  This immediately suggests that spatial filtering of the 

deflected beam will translate into size filtering of the neutral nanodroplets. 

The ability to scan through nanodroplet sizes within the same beam and within a single 

experiment is highly appealing, making it possible to explore the influence of droplet size on the 

spectroscopy and dynamics of embedded molecules.  Compared to milestone experiments on 
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droplet sizing by crossed-beam scattering [48,49], here the deflection angles, the size range, and 

the intensity of the deflected beam are all markedly higher. 

Charge migration.— To illustrate this capability, we investigate charge migration as a 

function of droplet size.  Consider the steps involved in electron-impact ionization of doped 

droplets [50,51].  Since helium atoms surround and greatly outnumber the dopant, an electron 

strike predominantly results in the creation of a He+ ion.  The positive hole then resonantly hops 

from one adjacent helium atom to another, toward the impurity in the middle, until one of two 

outcomes occurs:  it “self-traps” by forming He2
+ followed by the nucleation of larger Hen

+ 

cluster ions, or it reaches and ionizes the dopant.  Both outcomes are accompanied by significant 

energy release which boils off the helium and ejects the ion from the nanodroplet [16]. 

It follows that the probability of dopant ion formation can be viewed according to Beer’s 

law: Pm=exp(-ℜ/λ), where ℜ is the distance which the positive charge needs to travel before 

reaching the impurity and λ is its mean free path before self-trapping.  Since ℜ ~ droplet radius 

R (see below), a measurement of Pm as a function of droplet size will yield the important 

physical parameter λ. 

The concept of the measurement is as follows.  If a droplet undergoes electric deflection, 

this automatically implies that it carries an impurity molecule.  However, in the mass spectrum it 

can register either at the impurity mass or at the helium fragment mass.  The ratio between these 

two outcomes, which is precisely Pm, can be traced as a function of the droplet’s deflection – i.e., 

of its size. 

We developed a procedure to subtract the undoped beam’s contribution to the signal and 

to fit the dopant ion yield to the exponential form Pm∝exp(-γN1/3) [20].  Fig. 2 assembles the 
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results of measurements using CsI doping performed at three nozzle temperatures, i.e., for 

strongly distinct N .  Accordingly, it spans a wide range of droplet sizes N.  It is therefore 

satisfying that over this full range practically the same value of γ (±17%) is found, as anticipated 

for the ionization pathway described above.  

To relate γ to the mean free path, we need to estimate ℜ.  The He+ hole is originally 

created at a random location within the droplet [51].  For its subsequent motion, two models can 

be considered .  One [52] assumes that the positive charge hops radially inwards, the other 

(similar to [53]) that it hops along the dipole’s electric field lines all the way from its initial 

location to the molecule’s negative end.  Simulating both scenarios and assuming that the dopant 

occupies a cavity of ≈4 Å radius [54] at the center, we find ℜ≈0.7R for the former case [56] and 

ℜ≈1.0R for the latter.  (This neglects the density gradient near the droplet surface which should 

not appreciably affect the estimation of the mean free path λ [52].)  With R=2.22N1/3 Å [12], this 

translates into ℜ≈(1.6-2.2)N1/3 Å for the two models, respectively, or λ≈(1.6-2.2) /γ Å. 

Using the CsI pickup data from Fig. 2 we arrive at λ≈16 Å.  (Measurements using 

DMSO, less accurate and more limited in the spread and assignment of droplet sizes because of 

its smaller dipole moment and weaker deflections, yielded λ≈34 Å.) 

These values are similar to the estimates of 28-35 Å for droplets doped with HCN and 

HCCCN, found in [52,53] by a very different method: optically selective mass spectrometry.  

This confirms that our technique is well suited to the task of determining size-dependent 

parameters of nanodroplet behavior.  The referenced estimates are larger than λ determined here 

for CsI, but they were deduced for beams centered at considerably smaller average droplet sizes 

and containing broad size distributions.  This skews the deduced ionization probability, because 
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when the distribution is broad the smaller droplets within it will yield a higher proportion of the 

impurity ions.  This is avoided in the present approach which scans through much narrower 

nanodroplet size groupings by spreading out the full distribution along the deflection axis. 

Conclusions.— Cold polar molecules entrapped within superfluid helium nanodroplets 

can be nearly fully oriented by an external electric field.  We showed that this can be exploited in 

beam deflection experiments.  Since the electrostatic deflecting force experienced by an oriented 

molecular dipole becomes extremely large, we observed that an entire beam of massive 

nanodroplets, containing up to tens of thousands of He atoms, deflects by impressively large 

angles. 

As demonstrated here, if nanodroplets carry a molecule with a known dipole moment the 

deflection measurement can be used to calibrate the droplet size distribution in the beam.  

Conversely, by comparing the deflections of a beam doped with a reference molecule and the 

same beam doped with another species, one can “read out” the dipole moment of the latter in a 

model-free approach.  Since, as emphasized, nanodroplet embedding is applicable to a broad 

range of molecules (in particular polyatomic and biological) this introduces a correspondingly 

broad method of measuring molecular dipole moments.  (Note that direct measurements on 

isolated complex molecules began only recently [37] and many tabulated values still come from 

liquid phase data with potentially significant uncertainties [57].)   

The same approach can be employed with interesting and unusual agglomerates produced 

via sequential pick-up (this also is a unique capability of helium nanodroplet embedding).  For 

example, it can detect the formation of novel metastable assemblies of cold polar molecules, as 

we have demonstrated for DMSO dimers and trimers [58].  It should also be usable for the 

identification of polar vs. nonpolar conformers (cf. [37]).   
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Speaking of molecular characterization, it should also be possible to use strong 

electrostatic deflections to separate doped and undoped nanodroplets, which is important for 

emerging applications aiming at structural analysis of embedded molecules by x-ray, EUV, and 

electron pulses [15,59-61]. 

Finally, we pointed out that since the deflection angle of a doped nanodroplet depends on 

its mass, the broad size distribution contained within the original beam becomes spatially spread 

out by the time it reaches the detector plane.  In other words, the deflection process disperses the 

HeN population and establishes a means to probe the behavior of neutral nanodroplets as a 

function of their size N.  To illustrate this, we measured how the dopant ion yield varies with 

droplet radius, and thus determined the mean free path for the migration of positive charge 

through the helium matrix.  This droplet size-filtering technique will make possible size-resolved 

spectroscopy of cold dopants and dopant reactions.   
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FIG. 1.  (a) Deflection of HeN nanodroplets with DMSO dopant.  Squares: experimental data; 

blue line: pseudo-Voigt function fit to the undeflected profile; red line: fit by simulation of the 

deflection process [20].  (b) Same for CsI dopant.  (c) Average deflection of the nanodroplets 

beam vs. electrode voltage.  Its linear variation attests to the strong orientation of the cold dopant 

molecule along the field, cf. calculated orientation cosine labels.  (d) Average nanodroplet size as 

a function of nozzle temperature.  Symbols: mean, N , of the log-normal size distribution 

deduced from our deflection measurements; line: data from Ref. [12].  Fit to the deflection data 

yielded 0.85N NΔ =  for the FWHM of the distribution, in excellent agreement with Ref. [48].
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FIG. 2.  Probability of ionizing charge transfer to embedded CsI molecules as a function of 

nanodroplet size.  This probability was determined by a fit to the electric deflection profiles 

which spatially disperse nanodroplets according to their mass, as described in the text.  The 

displayed size range was covered by measurements at three nozzle temperatures (13 K, 15 K, 

and 19 K) corresponding to average droplet sizes N  of 3.7×104, 2.2×104 and 9×103 atoms, 

respectively [see Fig. 1(d)].  At each of these temperatures the beam contained a log-normal 

distribution of droplet sizes which then spread out spatially upon deflection. This allowed the 

data to span a range of sizes, as marked by the three (overlapping) bands of color.  For each of 

those bands the probability of dopant ion formation was fitted to the form Pm∝exp(-γN1/3).  The 

results are depicted as dashed lines in the figure, color-matched to the size band from which the 

corresponding value of γ was derived.  The lines extend into neighboring bands in order to show 

the range of uncertainty in their slope; the fact that they are close demonstrates the consistency of 

the analysis.  
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