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We experimentally realize a photonic analogue of the anomalous quantum Hall insulator using a two-
dimensional (2D) array of coupled ring resonators. Similar to the Haldane model, our 2D array is translation
invariant, has zero net gauge flux threading the lattice, and exploits next-nearest neighbor couplings to achieve
a topologically non-trivial bandgap. Using direct imaging and on-chip transmission measurements, we show
that the bandgap hosts topologically robust edge states. We demonstrate a topological phase transition to a
conventional insulator by frequency detuning the ring resonators and thereby breaking the inversion symmetry
of the lattice. Furthermore, the clockwise or the counter-clockwise circulation of photons in the ring resonators
constitutes a pseudospin degree of freedom. The two pseudospins acquire opposite hopping phases, and their
respective edge states propagate in opposite directions. These results are promising for the development of
robust reconfigurable integrated nanophotonic devices for applications in classical and quantum information
processing.

Photonics has emerged as a versatile platform to explore
model systems with nontrivial band topology, a phenomenon
originally associated with condensed matter systems [1–3].
Photonic systems have realized analogues of the integer quan-
tum Hall effect [4–8], Floquet topological insulators [9–12],
quantum spin-Hall and valley-Hall phases [13–18], and topo-
logical crystalline insulators [19, 20]. Topological protection
has enabled the realization of photonic devices that are ro-
bust against disorder, such as optical delay lines [7, 8], lasers
[21–23], and quantum light sources [24]. Features unique
to bosonic systems, such as the possibility of introducing
gain and loss [25–29], parametric driving, and squeezing of
light [24, 30, 31], provide opportunities to explore topological
phases that do not occur in fermionic systems.

Despite these advances, there has not yet been a nanopho-
tonic realization of the anomalous quantum Hall phase – a
two-dimensional Chern insulator with zero net gauge flux
[32, 33]. This is noteworthy since the various topological
phases differ significantly in how non-trivial band topology is
realized, offer different forms of topological protection, and
are suited for different platforms. For instance, photonic spin-
Hall phases based on degenerate orthogonal field polariza-
tions have been realized at microwave frequencies [14, 34],
but have proven to be challenging to implement at optical fre-
quencies using nanophotonic components. Photonic valley-
Hall and topological crystalline phases, which rely on lattice
symmetries, are easily realized at most frequencies including
the optical regime [15, 17, 18, 20, 35], but their topologi-
cal edge states manifest on internal boundaries instead of ex-
ternal edges [15, 18–20, 35] and are protected only against
certain boundary deformations (e.g., 120◦ bends but not 90◦

bends) [15, 19]. Quantum Hall and anomalous quantum Hall
phases do not require any special symmetries and are there-
fore significantly more robust that other topological phases:

topological edge states can appear along external edges and
are protected irrespective of the lattice shape. The quan-
tum Hall phase, which requires nonzero net gauge flux, has
been realized in nanophotonics [6–8], but not the anomalous
quantum Hall phase, which occurs in periodic lattices with
zero net flux. Anomalous Hall lattices are highly advan-
tageous for nanophotonic device applications, because their
translational invariance allows for simpler structure designs
and topological-to-trivial phase transitions can be easily in-
duced by tuning on-site potentials [32].

In this work, we demonstrate a nanophotonic analogue
of the anomalous quantum Hall system using a periodic 2D
checkerboard lattice of coupled ring resonators specifically
tailored to have strong next-nearest neighbor couplings [36].
The structure is implemented on a silicon-on-insulator plat-
form and operates at telecom frequencies [7, 8, 37], with ring
diameters and lattice periodicity on the order of 20–50 µm.
As proposed in Ref. [38], the tight-binding description of the
photonic lattice is similar to the Haldane model [32], in that
the net gauge flux threading the lattice is zero, but next-nearest
neighbor couplings induce non-zero local gauge flux. This ef-
fectively breaks time reversal symmetry and creates a topo-
logically nontrivial band gap. We directly image the light in-
tensity distribution in the lattice, revealing topological edge
states in the gap that are robust against missing-site defects
and can propagate around 90◦ corners without scattering into
the bulk. As the overall structure is time-reversal invariant,
it hosts a pseudospin degree of freedom associated with the
clockwise and the counter-clockwise (time-reversed) propa-
gation of photons in the rings. By selective excitation of the
pseudospins, we show that time-reversal invariance is effec-
tively broken within each decoupled pseudospin sector, and
the edge states associated with the two pseudospins propa-
gate in opposite directions. Furthermore, we demonstrate a
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FIG. 1. (a) Schematic of the 2D array of ring resonators, with site-rings A and B (blue and red, respectively) coupled using link-rings (grey).
The input and the output waveguides are shown in black. Top-left inset: microscope image of the device. Top-right inset: the ring resonators
support two pseudospins, up and down, which can be selectively excited and measured, and their corresponding edge states travel in opposite
directions (pink and brown arrows, respectively). Bottom inset: schematics for nearest-neighbor (left) and next-nearest-neighbor hoppings
(center and right) for the pseudospin-up. (b) The effective 2D lattice. Solid (dashed) lines denote nearest (next-nearest)-neighbor hoppings,
with hopping phases indicated. The gauge flux is ±π in a single plaquette, and zero over a unit cell of 2 plaquettes (shaded yellow). (c)–(d)
Band diagram of a cylindrical lattice, for M = 0 and M = 3J , respectively. Here kΛ is the phase between neighboring unit-cells along the
radial (periodic) direction. For M < 2J , the lattice is topological and exhibits edge states. The lattice is topologically trivial when M > 2J .

transition between topologically nontrivial and trivial phases
by detuning the ring resonance frequencies, and observe edge
states at an internal boundary between the two phases. No-
tably, the system is periodic and does not require staggering
the phases of the couplings, unlike the coupled-resonator sys-
tem of Refs. [6, 7, 23] which realizes the integer quantum Hall
effect. These features are highly promising for topological
nanophotonic devices that can be dynamically reconfigured
via optical, electrical, or thermal pumping [38, 39].

Our system, shown in Fig. 1(a), consists of two interposed
square lattices of ring resonators, with respective sites labelled
A and B [38]. These site-ring resonators are coupled to their
neighbors and also next-nearest neighbors using another set
of rings, the link rings. The resonance frequencies of the
link rings are detuned from those of the site-rings by one half
free-spectral range by introducing an extra path-length such
that the round-trip phase at site-ring frequencies is π [6, 7].
The link rings thus introduce a direction-dependent hopping
phase ±π/4 from each lattice site to their nearest neighbors,
while the hopping phase for next-nearest neighbors is zero
(Fig.1(a)). As a result, the local effective magnetic flux (gauge
flux) threading a plaquette of two A and two B site rings is
±π, whereas the net flux threading a unit cell of two plaque-
ttes is zero (Fig.1(b)). This staggered flux arrangement, orig-
inally conceived by Haldane, effectively breaks time-reversal
symmetry and gives rise to an anomalous quantum Hall phase
without Landau levels [32].

The photonic lattice is time-reversal invariant, and supports
a pseudospin (up or down) degree of freedom associated with
the circulation direction (clockwise or counter-clockwise) of
photons in the site-ring resonators (Fig.1(a)). The two pseu-
dospins are time-reversed partners, and thus have identical
coupling constants and resonance frequencies. However, they
have opposite hopping phases between nearest-neighbors, so

each pseudospin effectively experiences broken time-reversal
symmetry and realizes a copy of the anomalous Hall phase
[33] with the tight-binding Hamiltonian [38]

H =
∑
i,σ

(ω0 −M) a†i,σai,σ + (ω0 +M) b†i,σbi,σ (1)

−
∑
〈i,j〉,σ

J
(
a†j,σai,σ + b†j,σbi,σ + a†j,σbi,σe

−iσφi,j + h.c.
)
.

Here, ai,σ, bi,σ are the annihilation operators corresponding to
site rings A and B, respectively, at lattice site index i = (x, y)
and the summation 〈i, j〉 is only over nearest and next-nearest
neighbors indicated in Fig.1(b). σ = ±1 is the pseudospin
index for the up/down spins, respectively. J is the coupling
strength between nearest and the next-nearest neighbor sites
and φ = π/4 is the direction-dependent hopping phase be-
tween sites A and B, as shown in Fig. 1(a). We include
a frequency detuning M between the A and B site rings.
When M < 2J , the lattice band structure hosts a topologi-
cal bandgap, occupied by unidirectional, topologically-robust
edge states (Fig. 1(c)) and their number constitutes a topolog-
ical invariant [37, 40]. When M > 2J , the lattice is topo-
logically trivial and the edge states are absent (Fig. 1(d)). Be-
cause of the spin-dependent hopping phase, the edge states
corresponding to the two pseudospins propagate around the
lattice in opposite directions, similar to the quantum spin-Hall
effect [33]. Although the pseudospins do not follow Kramers
degeneracy theorem and the edge states are therefore not ro-
bust against inter-spin coupling disorder, the mixing between
pseudospins is negligible in the present system [7, 8].

We implemented the design using ring resonator waveg-
uides 510 nm wide and 220 nm high, with resonator length
≈ 70 µm. The gap between resonators is 180 nm, with cou-
pling strength J estimated at 15.6(4)GHz (see SM). To probe
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FIG. 2. (a) Measured transmission (T) spectrum for the topologically nontrivial lattice (M = 0) with the pseudospin-up excitation. The green
shaded region indicates the frequency band over which topological edge states are observed in direct imaging and the dashed lines indicate the
expected edge-band region for a pure device. (b) The corresponding spatial intensity distribution obtained through direct imaging at δν ≈ 0
(integrated over a frequency range of 5 GHz). Edge states circulate CCW around the lattice. (c) Intensity distribution at δν ≈ −20 GHz,
showing scattering into the bulk. (d)–(f) The corresponding results for the pseudospin-down excitation. The edge state now circulate CW
around the lattice. All spatial intensity distributions show only site ring resonators. The arrows indicate input and output ports for transmission
measurements.

the lattice, we couple a tunable continuous-wave laser at the
input port and measure the power transmission at the output
port (Fig. 1(b)). By choosing the input and the output ports,
we can selectively excite and measure a given pseudospin. A
microscope objective is also used to directly image the spatial
light intensity distribution [7].

To observe topological edge states, we fabricated an array
of 56 A resonators and 56 B resonators, as shown schemati-
cally in Fig. 1(a). For this device we choose M = 0, that is,
the A and B resonators are identical, corresponding to the non-
trivial topological phase. Fig. 2(a) shows the measured trans-
mission spectrum at the lattice output for the pseudospin-up
excitation. We observe high transmission near the frequency
detuning δν ≈ 0. Fig. 2(b) shows the measured spatial inten-
sity profile at δν ≈ 0, integrated over a frequency range of 5
GHz. The light is confined to the lattice edge and propagates
around the lattice in a counter-clockwise direction. Further-
more, the light travels around two sharp 90o bends without
scattering into the bulk of the lattice. This shows that this
high-transmission region around δν ≈ 0 is indeed the topo-
logical edge band. The decrease in light intensity as it propa-
gates along the edge is mainly due to scattering losses in the
resonator waveguides. By contrast, when we excite the lattice
outside this band, for example at δν ≈ −20 GHz, the spa-
tial intensity distribution occupies the bulk of the lattice, as
shown in Fig. 2(c). Moreover, the spatial intensity profile in
the bulk band is sensitive to even small changes in the excita-
tion frequency whereas the intensity profile in the edge band
is relatively constant throughout the edge band. Note that the
circulation direction (CCW) around the lattice is opposite to
the circulation direction (CW) in the site ring resonators.

This observation of topological edge states is also a demon-
stration of their robustness against fabrication-induced disor-
der. Although the fabrication was performed at a state-of-the-
art commercial foundry (IMEC, Belgium), there is significant
disorder in the ring resonance frequencies, which we mea-
sured to be around 33GHz, comparable to the band gap width
of 2J ≈ 32GHz. Nevertheless, disorder decreases the width
of the topological bandgap and hence increases the transverse
localization length of the edge states (see SM).

Next, we probe the spin-polarized nature of the topological
edge states by exciting the lattice with the pseudospin-down.
Fig. 2(d) shows the resulting transmission spectrum. The mea-
sured spatial intensity profile at δν ≈ 0 reveals an edge state
which now propagates around the lattice in a clockwise direc-
tion (Fig. 2(e)). Again, the edge state intensity is confined to
the physical edge of the lattice. The transmission at δν ≈ 0 is
approximately 5 dB lower than in the pseudospin-up case, be-
cause the edge state for the pseudospin-down travels a much
longer path between the input and output couplers. At fre-
quencies outside the band gap, we again see scattering into
the bulk (Fig. 2(f)). Because of the disorder, the edge-band re-
gions of the two pseudospins are slightly shifted in frequency.

To demonstrate the existence of a topological phase tran-
sition, we fabricated another device with sublattice detuning
M ≈ 98 GHz, significantly larger than the transition thresh-
old of 2J ≈ 31GHz. This detuning is achieved by increasing
(decreasing) the length of the A (B) ring resonators by 30 nm,
which red (blue) shifts their resonance frequencies. Fig. 3(a)
shows the measured transmission spectrum at the output, for
the pseudospin-up input. We observe almost negligible trans-
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FIG. 3. (a) Measured transmission (T) and reflection (R) spectrum of a topologically trivial device, with M ≈ 98 GHz � 2J and pseudospin-
up excitation. The transmission is negligible within the bandgap (δν ≈ 0) due to the absence of edge states. The transmission peak (and
reflection dip) at δν = +M coincides with the resonance frequency of the B rings. At δν = −M , the lattice absorbs some light from the
input but the light does not reach the output because of the large frequency mismatch between A and B rings. (b,c) Spatial intensity profiles for
δν = +M and δν = −M , showing excitation of only B and A rings, respectively. (d) Measured transmission spectrum for the pseudospin-
down excitation. Unlike the topological case, the transmission is same irrespective of the spin. (e,f) Spatial intensity distributions also remain
almost identical, confirming topologically trivial nature of the lattice.

mission at δν = 0, indicating the absence of any transmitting
channels in the bandgap. There is a single transmission band
at δν ≈ M ≈ 100GHz. The measured spatial intensity dis-
tribution at δν = 100 GHz (Fig. 3(c)) reveals only a few B
rings (which are resonant with the input frequency) are ex-
cited near the input port. In this regime, the A and B rings
are very weakly coupled due to the large resonance frequency
mismatch. The transmission is negligible at δν = −100 GHz
(the resonance frequency of the A rings) because the input and
output ports are coupled to B rings. A small amount of absorp-
tion by the A rings is visible in the reflection spectra shown
in Fig. 3(a), and in the spatial intensity profile of Fig. 3(b).
More importantly, we find that flipping the spin of excitation
does not affect the transmission spectrum or the spatial inten-
sity profile, as shown in Fig. 3(d-f); this confirms the lattice is
topologically trivial.

To verify that the edge states are not artifacts of the phys-
ical lattice boundary, we fabricated a device with an inter-
face between a topological lattice (M = 0) and a trivial lat-
tice (M ≈ 98GHz), shown in Fig. 4(a). We place an input
port on one edge of the topologically nontrivial domain and
monitor two output ports on the edges of the nontrivial and
trivial domains. The measured transmission spectra at the
two output ports, with the pseudospin-down excitation, are
shown in Fig. 4(b). At frequencies within the bandgap of
the nontrivial domain (highlighted in Fig. 4(b)), we observe
edge states propagating clockwise around the nontrivial do-
main (Fig. 4(c)). These edge states then follow the “inter-
nal” domain boundary, and do not enter the topologically triv-
ial domain; accordingly, negligible transmission is observed
at the output port in the trivial domain. As a further test of
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robustness, we deliberately removed one site-ring resonator
from the edge of the topologically nontrivial domain, as indi-
cated in Fig. 4(a) and (c). The edge state routes around the de-
fect, without scattering into the bulk. We emphasize that this
topological protection is superior to recently-demonstrated
crystalline symmetry-protected and valley Hall topological
edge states, which are sensitive to symmetry-breaking disor-
der [17, 18, 20, 41, 42].

To summarize, we demonstrated topologically robust edge
states in a nanophotonic analogue of the anomalous quantum
Hall effect, using a periodic 2D lattice of ring resonators with
zero net gauge flux. We showed a topological-to-trivial phase
transition, induced by relatively small detunings of the ring
resonance frequencies. In the future, this phase transition can
be utilized for robust routing and switching of light in inte-
grated photonic devices [38]. Specifically, the silicon pho-
tonics platform can easily include active components, such
as metal heaters [37] or electro-optic modulators [43] to dy-
namically tuning the ring resonances. Moreover, the large
Kerr nonlinearity of silicon could be leveraged for robust,
optically-reconfigurable light routing, and to explore the be-
havior of topological states in a nonlinear regime. Our design
can also be implemented using other material platforms, such
as silicon-nitride, aluminum-nitride, etc., to work near the vis-
ible wavelength region.
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