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The growth, form, and division of prebiotic vesicles, membraneous bags of fluid of varying com-
ponents and shapes is hypothesized to have served as the substrate for the origin of life. The
dynamics of these out-of-equilibrium structures is controlled by physicochemical processes that in-
clude the intercalation of amphiphiles into the membrane, fluid flow across the membrane, and
elastic deformations of the membrane. To understand prebiotic vesicular forms and their dynamics,
we construct a minimal model that couples membrane growth, deformation, and fluid permeation,
ultimately couched in terms of two dimensionless parameters that characterize the relative rate of
membrane growth and the membrane permeability. Numerical simulations show that our model
captures the morphological diversity seen in extant precursor mimics of cellular life, and might
provide simple guidelines for the synthesis of these complex shapes from simple ingredients.

It is likely that the first cells originated when a self-
replicating biomolecule was separated from its environ-
ment by a permeable membrane barrier and both the
biomolecule and the membrane were able to grow and
replicate. Physical compartmentalization allowed for a
separation of chemical environments, making way eventu-
ally for the specialization and competition between cells
that is the basis for Darwinian evolution [1, 2]. How
these prebiotic cells could grow and divide without the
complex machinery in extant cells remains a major open
question in biology. Given the strong chemical and phys-
ical constraints on biomolecular replication, and mem-
brane compartmentalization, growth, and dynamics, it
is natural to expect that physicochemical processes are
intimately tied to the evolvability of such states. Re-
cent research on the ability of a biomolecule to replicate
and transmit information has led to a consensus on a
range of possible chemical replicators [3]. Independently,
the physical properties of the external membrane bar-
rier under growth and division have also been the sub-
ject of experimental studies [4, 5]. However, the phase
space of physical solutions for the growth and form of
the prebiotic vesicles is difficult to grapple with owing
to the range of spatio-temporal processes that need to
be accounted for—from membrane growth and deforma-
tion to fluid permeation and ultimately division. Insight
into the dynamics of membrane growth and replication
may be gleaned by considering artificial lipid vesicles as
well as naturally occurring L-form bacteria. Synthetic
lipid vesicles composed of single-chain amphiphiles are
considered to be representative of prebiotic conditions
[6], as are L-forms, naturally occurring bacteria with ge-

netic mutations that inhibit cell wall formation [7]. Both
these systems have been experimentally shown to exhibit
complex shapes and modes of growth; they can grow
while maintaining their original spherical shape, by elon-
gating into cigar shapes that eventually divide into two
vesicles of the same size [8-11] (Fig. 1a), or by develop-
ing protrusions in the form of external buds [9, 12, 13]
(Fig. 1b), internal buds [10, 12] (Fig. 1d), or long tubes
[4, 9, 12-14] (Fig. 1c). It has been suggested previously
that growth and division may be controlled solely by the
physical processes at play [5, 15, 16]. In particular, it
is well-established that deformations during growth in-
volve dynamical imbalances in the surface area to vol-
ume ratio, either due to excess membrane growth or low
permeability [13, 17, 18]. Our work builds on existing
theoretical studies of the equilibrium shapes of vesicles
[19-23] and out-of-equilibrium membrane growth [24-29]
by exploring the range of possible behaviors within a
non-equilibrium physical model that couples membrane
growth and fluid permeation.

Our minimal model of prebiotic vesicles assumes a
closed elastic surface of initial radius Ry, spontaneous
curvature cg, bending stiffness B, and fluid permeabil-
ity K, with the membrane thickness being much smaller
than the vesicle radius, which changes over time. We also
assume the membrane to be nearly inextensible, which
translates into a high energy cost for stretching, making
bending deformations energetically preferable. The vesi-
cle is assumed to be immersed in an incompressible fluid
having viscosity p and at temperature 7. We further as-
sume that the amphiphilic molecules that constitute the
membrane are at a constant concentration in the sur-



Figure 1. (top) Different morphologies observed during
growth in synthetic giant vesicles and L-form bacteria: a)
symmetric division, adapted from [11] b) budding, adapted
from Refs. [10, 13] ¢) tubulation, adapted from [13] d) vesicu-
lation, adapted from [10, 13] (Scale bars represent 3pum). Our
minimal model leads to shapes that are similar to those ob-
served experimentally, using the following dimensionless pa-
rameters: a) II; = 0.01, Il = 2.5, b) II; = 0.15, II; = 5, ¢)
II; = 0.02, II; = 5 and d) II; = 0.15, IIs = —2.5 (see text
for details). e) A schematic of our vesicle model that uses a
3D triangulated lattice with bending rigidity B immersed in
a fluid with viscosity u, with area that grows with homoge-
neous expansion of the triangle size at a rate v and volume
whose evolution is controlled by the wall permeability K.

rounding medium and that they are incorporated into
the membrane at an average net rate of 7. At a con-
tinuum level, this implies that the vesicle area A grows
according to the simple law

A= ~yA (1)

Since lipids are incorporated into the external layer, we
assume that rapid transbilayer lipid exchange distributes
amphiphiles across the membrane and relax the bending
energy [30], and further that amphiphile species deter-
mines the preferred spontaneous curvature [31]. We ac-
count for the vesicle permeability, with changes in the
vesicle volume produced by transmembrane fluid flux ac-
cording to

V = AKAP (2)

where the pressure drop AP = P,y — Py, and K is
the membrane permeability. In this minimal model, we
assume that the pressure drop is dominated by the os-
motic component, which is kept constant by implicit in-
ternal mechanisms. We note that these two equations
are incompatible with spherical vesicle growth, since they
specify two laws for radial expansion - one linear and an-
other exponential. Naturally, the slower of these is rate-
limiting, and this leads to the complexity of shapes seen,
as we will see shortly.

Since the size of the system (~ 10um)) is larger than
the scale over which thermodynamic fluctuations are rel-
evant (and B/kpT ~ 10), we neglect the role of ther-
mal fluctuations. In terms of the five variables, the
bending stiffness (B), growth rate (), dynamic viscos-
ity (), effective permeability (KX AP), and spontaneous
curvature (cg), we construct three relevant length scales:
the critical radius B; = KAP/~v, i.e. the radius be-
low which vesicle growth is dominated by volume in-
crease and above which is dominated by area growth,
the mechanical relaxation lengthscale Ry = (B/yu)'/3,
the size below which bending deformations are mechan-
ically equilibrated, but above which they are still dy-
namically varying, and the lengthscale related to the
spontaneous curvature cg 1. Using the following val-
ues for the viscosity u = 0.8 - 1072kg/m - s, bending
stiffness B = 10kgT = 4 -1072°J [32], scaled per-
meability KAP = 1077-10"°m/s [33-36], growth rate
v = 0.557! [6], and spontaneous curvature |co| = 106—
108 m~1 [37], we find that R; ~ [1077 — 1075 m, R, ~
[5x 107%,20 x 10~ m. This allows us to define two di-
mensionless parameters: II; = R;/R,; € [0.01, 1], which
accounts for the ability of the vesicle to mechanically
equilibrate under imbalances arising from growth beyond
R;, and IIy = Rjcp € [0.1,100], which determines the rel-
ative magnitude of spontaneous vesicle curvature (not-
ing that it can be negative or positive). A small value
of II; corresponds to a small critical radius and large re-
laxation lengthscales: this is the limit of slow growth in
which vesicles evolve in a sequence of quasi-equilibrated
shapes. On the other hand, large values of II; corre-
spond to large critical radii and small relaxation length-
scales which allow only for local equilibration; this is the
limit of non-equilibrium growth. The subset of values we
consider corresponds to the regime of membrane-driven
growth, which we reason is likely when simple cellular
precursors are unlikely to have been able to sustain high
osmotic pressures.

We use overdamped dynamics to model the vesicle as a
porous elastic membrane immersed in an incompressible
fluid. The elastic energy of the lipid bilayer is assumed
to be equal to the sum of the local stretching energy,
the Canham-Helfrich Hamiltonian [38, 39], and a penalty
term that tethers the volume of the vesicle to the target
volume Vi, which is typically growing. This yields the
expression for the energy

E= E/ (J — 1)2cla'+E /(H—co)Qda—i—k—v(V—VT)z,
2 Jg 2 Jg 2

(3)
where k, is the stretching coefficient, B is the bend-
ing modulus, H is the sum of the principal curvatures,
cp is the spontaneous curvature, and ky is a volume-
preserving penalty parameter. In the above integrals, da’
is the area element in the reference surface S’, da is the
area element in the deformed configuration S, and the



term J that appears in the stretching energy is the Ja-
cobian of the transformation from reference coordinates
to deformed coordinates. The reference surface, i.e. the
equilibrium state, is assumed to be a sphere, with the
stretching term penalizing local changes in area relative
to the reference configuration following (1), while the tar-
get volume follows (2). In our simulations, the membrane
is represented as a triangulated lattice that undergoes
growth and deformation (Fig. le), with vertices follow-
ing Brownian dynamics in the presence of forces driven
by the Hamiltonian above. To avoid numerical instabili-
ties, the surface is remeshed periodically and the effective
temperature is kept very small to ensure robustness with
respect to mesh size and shape changes, and small fluc-
tuations (see SI for further details).

We simulated vesicular growth using this model af-
ter initializing the vesicles as spheres with initial radius
Ry = 2R; over the range IT; = 0.01-0.5 and II; = —2.5-5
by varying the growth rate, permeability, bending stiff-
ness, and viscosity. First we study the shape evolution
during growth as a function of II; for vesicles with zero
spontaneous curvature (Il = 0 corresponding to the in-
termediate row of Fig. 2). In all our simulations reported
in the paper, we have chosen the stretching coefficient k,
to be sufficiently large so that bending, rather than in-
plane stretching, is the preferred mode of deformation.
We find a transition that occurs continuously around
II; = 0.15 with shapes showing increasingly high-order
symmetries. Values of II; below this transition corre-
spond to quasi-equilibrum shapes that continuously relax
while the reduced volume decreases during growth (Fig. 3
(a)). Values of II; above the transition correspond to
nonequilibrated configurations in which surface growth
is faster than the timescale for mechanical relaxation, so
that the vesicle incorporates new material by corrugating
its surface at the cost of increased elastic energy.

For the case of zero spontaneous curvature (Ils = 0),
there is an energy barrier for neck formation that pre-
vents budding or sprouting. Consequently, in the quasi-
equilibrated case the growing surface area can only be ac-
commodated by the formation of vesicle-scale, pancake-
like geometries. The most general way to form necks
and thus take the simplest route to cell division, is by
introducing a non-zero spontaneous curvature. Indeed,
for fixed non-zero spontaneous curvature, with Iy # 0,
we see the emergence of two different behaviors depend-
ing on the sign of the spontaneous curvature. Positive
spontaneous curvatures give rise to tube formation and
budding. Consistent with the observations for Il = 0,
we observe quasi-equilibrium shapes at small values of
II; in which a tube sprouts from the main body of the
vesicle. As II; is increased, tube formation is replaced by
single budding events. At large values of 11, several bud-
ding sites emerge on the vesicle surface. Finally, negative
spontaneous curvature corresponds to shapes with inner
tubulation (small IT;) and inner vesiculation (large IIj,

Figure 2. Morphospace of vesicle shapes as a function of the
dimensionless mechanical relaxation II; and the dimensionless
spontaneous curvature Ils. For IIo = —2.5 the shapes also
visualize the interior of the vesicles where vesiculation occurs.
Configurations correspond to vesicle shapes immediately prior
to division or fission, with snapshots of the vesicle just before
a topological transition associated with fission.

Fig. 3(b)). In the SI, we investigate the case of low k, in
which surface stretching becomes energetically preferable
and find that rather than tube sprouting, a neck appears
in the narrowest section of a pear-shaped vesicle (Fig.
S1).

Large values of II; correspond to the cases of high per-
meability and rapid growth, in which both vesicle volume
and surface area grow faster than the timescale for me-
chanical relaxation, resulting in a build-up of elastic en-
ergy (Fig. 3(b)). The vesicle grows spherically until vol-
ume growth cannot keep up with surface growth, at which
point patches of constant mean curvature with |¢| ~ ¢
appear throughout the surface to relax the bending en-
ergy. Further surface growth results in the accumulation
of extra material in those patches, which subsequently
become nucleation sites for budding or vesiculation.

Although we stop our simulations prior to vesicle fu-
sion or division given the geometric and biophysical com-
plexity of the topological transition associated with di-
vision in 3 dimensions, we can explore this process in
the case of 2 dimensions (relevant for vesicles that are
confined between solid surfaces) and also study the for-
mation of thin necks Fig. 3(a)), since this might lead to
division spontaneously due to thermal fluctuations. Our
qualitative exploration shown in Fig. 2 reveals various
behaviors: we find vesicles approaching symmetric divi-
sion with very small dispersion in size, and vesicles that
develop small internal or external buds that might also
be precursors to division. In this context, it is impor-
tant to note that the initial radius influences the shape



of the vesicles during growth. Assuming a spherical con-
figuration and setting the radius change from the area
and volume growth equations equal to each other, one
may compute R. = 2KAP/y = 2R; to be the radius at
which volume growth cannot keep up with surface growth
and the vesicle begins to deviate from a spherical shape.
Whereas the above results were obtained using an initial
vesicle radius of Rg = R,, if Ry < R;, there is a prelim-
inary stage in which the vesicle grows spherically until
reaching the critical radius R, before the deformations
discussed above occur. When Ry > R. however, area
growth is initially much faster than volume growth and
the surface undergoes corrugations at lower values of Il;
for large values of Ry, daughter vesicles will effectively
bud off, reducing the radius of the mother vesicle until it
reaches R..

Simulations in 2D systems (see SI), show very similar
features that map onto the morphospace of Fig. 2, in
the sense that vesicles will exhibit the morphologies of
Fig. 2 immediately prior to division. Furthermore, in the
2D systems, we can capture the topological transitions
associated with division easily and thus simulate multiple
generations (see SI). Vesicles that grow into cigar shapes
display accurate size control when the permeability and
growth rate are such that both the perimeter and area
double simultaneously (SI Fig. S5), leading to a periodic
steady state.

To assess the validity of our assumption of local hy-
drodynamics, we used the immersed boundary method
[40] to model the non-local hydrodynamics and solved
the fully coupled elastohydrodynamic problem (see SI).
While our results are qualitatively consistent with the
simpler local hydrodynamic approximation used so far,
accounting for non-local hydrodynamics increases the
characteristic length scales of membrane tubules and in-
vaginations and lowers the energy barrier for the forma-
tion of creases and folds (see SI).

Overall, our study of non-equilibrium vesicle growth
and division allows us to investigate the role of permeabil-
ity, stiffness, viscosity, and growth rate via two dimen-
sionless parameters that define a two-dimensional mor-
phospace. Our simulations reveal that many of the essen-
tial aspects of growth and dynamics can be understood in
terms of an imbalance between surface to volume growth
and the relative rate of mechanical relaxation. Our mor-
phospace allows us to recapitulate the various observed
shapes of simple dynamically growing lipid vesicles and
their approximate biological analogs, L-forms [8—-12], and
allows us to evaluate whether the varied morphodynam-
ics of prebiotic vesicles and their modern counterparts
could arise from non-equilibrium physicochemical pro-
cesses. Our minimal model provides a foundation to
study the physicochemical constraints on protocellular
growth and replication while setting the stage to include
the additional complexity associated with the dynamics
of transbilayer lipid exchange and natural curvature, in-
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Figure 3. Scaled elastic energy and vesicle shapes as a func-
tion of scaled time for two different modes of growth. (Top)
When 1I; = 0.05 and II> = 2.5, the formation of a skinny
neck between symmetric lobes provides a likely mechanism of
homeostatic division in 3D. The slow growth allow the vesi-
cle to deform through quasi-equilibrated shapes with roughly
constant elastic energy, and with a drop in the energy corre-
sponding to neck formation. (Bottom) When II; = 0.25 and
IIs = —2.5, fast surface growth and negative curvature leads
to multiple sites of inward vesiculation. The build-up in elas-
tic energy is a signature of fast non-equilibrated growth. The
shapes along the curve also show the interior of the vesicles.

ternal sources of lipids, concentration differences across
the membrane, and the role of multiple bilayers.
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