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The growth, form, and division of prebiotic vesicles, membraneous bags of fluid of varying com-
ponents and shapes is hypothesized to have served as the substrate for the origin of life. The
dynamics of these out-of-equilibrium structures is controlled by physicochemical processes that in-
clude the intercalation of amphiphiles into the membrane, fluid flow across the membrane, and
elastic deformations of the membrane. To understand prebiotic vesicular forms and their dynamics,
we construct a minimal model that couples membrane growth, deformation, and fluid permeation,
ultimately couched in terms of two dimensionless parameters that characterize the relative rate of
membrane growth and the membrane permeability. Numerical simulations show that our model
captures the morphological diversity seen in extant precursor mimics of cellular life, and might
provide simple guidelines for the synthesis of these complex shapes from simple ingredients.

It is likely that the first cells originated when a self-
replicating biomolecule was separated from its environ-
ment by a permeable membrane barrier and both the
biomolecule and the membrane were able to grow and
replicate. Physical compartmentalization allowed for a
separation of chemical environments, making way eventu-
ally for the specialization and competition between cells
that is the basis for Darwinian evolution [1, 2]. How
these prebiotic cells could grow and divide without the
complex machinery in extant cells remains a major open
question in biology. Given the strong chemical and phys-
ical constraints on biomolecular replication, and mem-
brane compartmentalization, growth, and dynamics, it
is natural to expect that physicochemical processes are
intimately tied to the evolvability of such states. Re-
cent research on the ability of a biomolecule to replicate
and transmit information has led to a consensus on a
range of possible chemical replicators [3]. Independently,
the physical properties of the external membrane bar-
rier under growth and division have also been the sub-
ject of experimental studies [4, 5]. However, the phase
space of physical solutions for the growth and form of
the prebiotic vesicles is difficult to grapple with owing
to the range of spatio-temporal processes that need to
be accounted for—from membrane growth and deforma-
tion to fluid permeation and ultimately division. Insight
into the dynamics of membrane growth and replication
may be gleaned by considering artificial lipid vesicles as
well as naturally occurring L-form bacteria. Synthetic
lipid vesicles composed of single-chain amphiphiles are
considered to be representative of prebiotic conditions
[6], as are L-forms, naturally occurring bacteria with ge-

netic mutations that inhibit cell wall formation [7]. Both
these systems have been experimentally shown to exhibit
complex shapes and modes of growth; they can grow
while maintaining their original spherical shape, by elon-
gating into cigar shapes that eventually divide into two
vesicles of the same size [8–11] (Fig. 1a), or by develop-
ing protrusions in the form of external buds [9, 12, 13]
(Fig. 1b), internal buds [10, 12] (Fig. 1d), or long tubes
[4, 9, 12–14] (Fig. 1c). It has been suggested previously
that growth and division may be controlled solely by the
physical processes at play [5, 15, 16]. In particular, it
is well-established that deformations during growth in-
volve dynamical imbalances in the surface area to vol-
ume ratio, either due to excess membrane growth or low
permeability [13, 17, 18]. Our work builds on existing
theoretical studies of the equilibrium shapes of vesicles
[19–23] and out-of-equilibrium membrane growth [24–29]
by exploring the range of possible behaviors within a
non-equilibrium physical model that couples membrane
growth and fluid permeation.

Our minimal model of prebiotic vesicles assumes a
closed elastic surface of initial radius R0, spontaneous
curvature c0, bending stiffness B, and fluid permeabil-
ity K, with the membrane thickness being much smaller
than the vesicle radius, which changes over time. We also
assume the membrane to be nearly inextensible, which
translates into a high energy cost for stretching, making
bending deformations energetically preferable. The vesi-
cle is assumed to be immersed in an incompressible fluid
having viscosity µ and at temperature T . We further as-
sume that the amphiphilic molecules that constitute the
membrane are at a constant concentration in the sur-









5

[4] T. F. Zhu and J. W. Szostak, Coupled Growth and Divi-
sion of Model Protocell Membranes, J. Am. Chem. Soc.
131, 5705 (2009).

[5] I. Budin and J. W. Szostak, Physical effects underlying
the transition from primitive to modern cell membranes.,
Proc. Natl. Acad. Sci. U. S. A. 108, 5249 (2011).

[6] I. A. Chen and J. W. Szostak, A kinetic study of the
growth of fatty acid vesicles., Biophys. J. 87, 988 (2004).

[7] J. Errington, L-form bacteria, cell walls and the origins
of life., Open Biol. 3, 120143 (2013).

[8] R. Mercier, P. Domı́nguez-Cuevas, and J. Errington, Cru-
cial role for membrane fluidity in proliferation of primi-
tive cells., Cell Rep. 1, 417 (2012).

[9] M. Leaver, P. Domı́nguez-Cuevas, J. M. Coxhead, R. A.
Daniel, and J. Errington, Life without a wall or division
machine in Bacillus subtilis., Nature 457, 849 (2009).
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