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Synthesis of biopolymers such as DNA, RNA, and proteins are biophysical processes aided by
enzymes. Performance of these enzymes is usually characterized in terms of their average error
rate and speed. However, because of thermal fluctuations in these single-molecule processes, both
error and speed are inherently stochastic quantities. In this paper, we study fluctuations of error
and speed in biopolymer synthesis and show that they are in general correlated. This means that,
under equal conditions, polymers that are synthesized faster due to a fluctuation tend to have
either better or worse errors than the average. The error-correction mechanism implemented by
the enzyme determines which of the two cases holds. For example, discrimination in the forward
reaction rates tends to grant smaller errors to polymers with faster synthesis. The opposite occurs
for discrimination in monomer rejection rates. Our results provide an experimentally feasible way
to identify error-correction mechanisms by measuring the error-speed correlations.

Organisms encode genetic information in heteropoly-
mers such as DNA and RNA. Replication of these het-
eropolymers is a non-equilibrium process catalyzed by
enzymes. The crucial observables to characterize these
enzymes are their error rate and speed. A low error, de-
fined as the fraction of monomers in the copy that do not
match the template, ensures correct trasmission of bio-
logical information. High processing speed is also crucial
to guarantee fast cell growth. Theoretical approaches
have been developed to compute the average error and
average speed of polymerization processes [1–7]. How-
ever, at the single molecule level, both error and speed
can present significant stochastic fluctuations.
In this Letter we address fluctuations in the error and

speed of polymer synthesis. In particular, we show that
correlations between these quantities exist. These cor-
relations provide a way to identify the error correction
mechanism adopted by an enzyme from experimental
data. This approach can circumvent the characteriza-
tion of these enzymes by measuring all kinetic rates of
the underlying reaction network [9–16].
We consider an enzyme that replicates an existing tem-

plate polymer by sequentially incorporating monomers
into a copy polymer (Figure 1a). In a given time interval
T , the enzyme synthesizes a copy made up of a number
of monomers L. Because of thermal fluctuations, en-
zymes sometimes incorporate wrong monomers (w) that
do not match the template, instead of the right ones (r).
In practical cases, there can be multiple types of wrong
monomers; for simplicity, we do not distinguish among
them. We denote R as the number of right matches and
W the number of wrong matches in the copy, so that
R +W = L. The error of the polymer copy can be then
expressed as

η = W

L
. (1)

We focus on two possible setups, corresponding to two

idealized experiments. In the first, the enzyme repli-
cates a given template polymer for a fixed time T ≫ 1.
(Fig. 1b). Due to the stochasticity of single-molecule
biochemical reactions, both the polymer length L and
the error η fluctuate. We denote their variance with
σ2
L = ⟨L2⟩−⟨L⟩2, σ2

η = ⟨η2⟩−⟨η⟩2 and the covariance with

σ2
ηL = ⟨ηL⟩ − ⟨η⟩⟨L⟩, where ⟨. . .⟩ is an average over differ-

ent realizations of the same process. Since T is fixed, we
quantify the correlations between error and speed with
the error-length coefficient

rηL = σ2
ηL

σLση

. (2)

In the second setup, each realization terminates when
the enzyme has incorporated a number L ≫ 1 of
monomers (Fig. 1c). In this case, L is fixed, whereas
the total duration T of the copy process fluctuates. This
setup represents the biological scenario where an en-
zyme copies a polymer of fixed length. In this case, we
study the correlation between the polymerization error
and speed via the coefficient

rηT = σ2
ηT

σTση

(3)

where σ2
T = ⟨T 2⟩ − ⟨T ⟩2 is the variance of T and

σ2
ηT = ⟨ηT ⟩ − ⟨η⟩⟨T ⟩.
Our two setups are akin to two conjugate ensembles

in equilibrium statistical physics. For large times (and
lengths), fluctuations in these two ensembles can be re-
lated by means of large deviation theory [17]. Following
this approach we obtain

rηT = −rηL (4)

(see [8] for details). Eq. (4) implies that the two setups
correspond to two equivalent ensembles. Therefore, in
the following we will focus on the fixed time setup only.
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FIG. 1. (a) An enzyme reads an existing heteropolymer as
a template and sequentially incorporates monomers to copy
it. Each incorporated monomer can either be a right (r) or
wrong (w) match with the template polymer. (b) Due to
thermal fluctuations, the polymer length L and error η are
random quantities at fixed completion time T . (c) When an
enzyme produces a copy polymer with fixed length, the error
η and the time T fluctuate. Scatterplots in (b) and (c) repre-
sent N = 5000 realizations of the same polymerization process
where incorporation occurs via two sequential irreversible re-
actions, see Ref. [8]. Data skewness indicates correlations in
the observables.

To estimate rηL we first observe that the distributions
of R and W tend to Gaussian for large T due to the cen-
tral limit theorem. We can therefore obtain the moments
of L = R +W and η = W /(W +R) from those of R and
W . This procedure yields

rηL = (1 − 2⟨η⟩)σ2
RW + (1 − ⟨η⟩)σ2

W − ⟨η⟩σ2
R√

σ2
Rσ

2
W − (σ2

RW )2 . (5)

To compute the quantities in Eq. (5), we assume that the
final chemical reaction to incorporate a r or a w monomer
is irreversible. This assumption is realistic for most prac-
tical cases such as DNA polymerization [11, 18] and pro-
tein translation [13–15]. Our framework could be gener-
alized to cases where the last reaction is reversible, per-
mitting an interpretation of the results using stochastic

thermodynamics [1–5, 19]. For simplicity, we also assume
that probabilities to incorporate right and wrong matches
do not depend on the template monomer. Under these
assumptions, we describe the polymerization process by
means of the probabilities η0 and 1 − η0 to incorporate
a wrong (w) or a right (r) monomer, respectively, and
the probability distributions P (τ ∣r) and P (τ ∣w) that it
takes a time τ to incorporate an r or a w monomer, re-
spectively. The value of η0 and the functions P (τ ∣r) and
P (τ ∣w) can be computed from the underlying reaction
network [6, 20]. With these quantities we can express
the joint probability P (R,W ∣T ) for large T as

P (R,W ∣T ) ≈ (R +W
W
)ηW0 (1 − η0)R × (6)

×∫ ∞

0

R∏
i=1

W∏
j=1

dτidτjP (τi∣r)P (τj ∣w)δ ( R∑
n=1

τn + W∑
m=1

τm − T) .

In Eq. (6), the binomial term weights the probability
of incorporating R right and W wrong monomers. The
integral term in the second line selects trajectories whose
sum of incorporation times is equal to T .
Evaluating the average error for large T gives the con-

sistency relation ⟨η⟩ = η0. Computing the covariance ma-
trix of P (R,W ∣T ) in the same limit, see Ref. [8], and
substituting the resulting moments in Eq. (5) gives

rηL = β√
1 + β2

(7)

with

β = (⟨τ⟩r − ⟨τ⟩w)
√
η0(1 − η0)√(1 − η0)σ2

τ,r + η0σ2
τ,w

, (8)

where ⟨τ⟩r , ⟨τ⟩w , σ2
τ,r and σ2

τ,w are the means and vari-
ances of P (τ ∣r) and P (τ ∣w), that we assume to be finite.
We validated Eqs. (7) and (8) with stochastic simulations
(see Ref [8]) and we will use them to compute error-speed
correlations in the following. Expanding Eq. (8) and Eq.
(7) for small η0 leads to

rηL ≈ ⟨τ⟩r − ⟨τ⟩w
στ,r

√
η0. (9)

Eq. (9) is our main result. It predicts that the sign of
rηL depends on the sign of (⟨τ⟩r − ⟨τ⟩w) only. We will
show that, in practice, the error correction mechanisms
determine this sign.
Kinetic Proofreading. Hopfield’s kinetic proofreading

model [21] is an elegant example of an incorporation pro-
cesses implementing error correction. In this model, the
enzyme first captures either a r or w monomer (Figure
2.a). After the initial binding, the enzyme can either re-
ject the monomer or consume ATP to induce a conforma-
tional change. Thanks to this change, the enzyme gains a
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FIG. 2. Reaction networks for polymer synthesis. (a)
Hopfield model. The kinetic rates satisfy the relations
kr = k exp[∆Er/kBT ], kw = k exp[∆Ew/kBT ], kr

p =

m exp[∆Er/kBT ] and kw
p = m exp[∆Ew/kBT ] with k ≫ 1,

m = 1 and n ≪ 1, so that the model operates in the proof-
reading regime [21]. (b) Protein translation model from [20]
with rates extracted from [15]. Same line thickness marks
reaction rates of the same order of magnitude.

second chance to reject wrong monomers. This second re-
jection reaction is the kinetic proofreading and it greatly
reduce the error probability η0. This idea has been gener-
alized to more complex proofreading models [2, 6, 20, 22–
25]. Rates of forward reactions in the Hopfield model do
not depend on the monomer type, whereas rejection re-
actions have higher rates for w than r monomers (Figure
2.a). In the proofreading regime (Figure 2.a), the error
probability η0 can be estimated with first passage time
techniques [20] as

η0 ≈ (1 + kr

kw

krp

kwp
)−1 ≈ e− 2(∆Ew−∆Er)

kBT (10)

where the ratios kr/kw and krp/kwp reflect the discrim-
ination in the rejection rates (see [21] and [8]), kB is
the Boltzmann constant and T is the temperature. Both
these ratios relate to the difference ∆Er−∆Ew in binding
energy of r and w monomers through kr/kw = krp/kwp =
exp[(∆Er −∆Ew)/kBT ]. Outside of the error correction
regime, the error is always larger than predicted by Eq.
(10) [21, 26]. In the proofreading regime of the Hopfield
model, error and speed fluctuations are positively corre-
lated. In particular, the error-length coefficient always
falls in the range

0 ≤ rηL ≤ η0 (
√

1 − η0
η0

− 1) (11)

for any choice of η0, see Ref. [8] and Fig. 3. This implies
that the error-speed correlations become negligible when
proofreading ensures very small errors.
Protein translation. A standard model of protein

translation is characterized by the same reactions of the
Hopfield model (Figure 2.b and [20, 27, 28]). A major
difference is that forward reactions discriminate between
the r and w monomers (Table S1 and [15, 20]). Within
this model we estimate the error probability as

η0 ≈ kwf

kr
f

(1 + kwf

kwp
)−1 (12)
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FIG. 3. The Hopfield model and the protein translation model
have opposite error-speed correlations. (a) Hopfield model.
The gray shaded region defines the allowed values of rηL for
a given error probability η0, see Eq (11). Black crosses are
estimates of η0 and rηL for 60 random sets of reaction rates
in the proofreading regime (see caption of Figure 2, Ref. [8],
and Table S2). (b) Protein translation. To test whether Eq.
(13) (gray line) is a good approximation of simulated values of
the error-speed coefficient, we computed rηL corresponding to
the kinetic rates in [20] for wild type E. coli, a hypercorrective
and an error-prone mutation (blue crosses). We also evalu-
ated rηL for randomly generated sets of the reaction rates in
Figure 2.b (black squares). For all points in both panels, cor-
relation coefficients are evaluated by means of Eqs. (7)-(8)
upon computing moments of incorporation times with first
passage time techniques [20]. See Ref. [8] for details of nu-
merical calculations.

(see [20] and [8]). In this case, the error probability de-
pends on the relative preference to bind r rather than w

monomers (term kwf /krf). Proofreading effectiveness over
the incorporation reaction for w monomers (term kwf /kwp )
further decrease the error probability. Because of the
discrimination in the forward rates, the energy difference
∆Er−∆Ew does not set a lower bound to the error prob-
ability as in the Hopfield model [6]. Similar calculations
as in Eq. (11) predict an error-length coefficient

rηL ≈ − 1√
2

⎛⎝1 +
kwp

kw
f

⎞⎠
−

1

2

. (13)

(Ref. [8] and Figure 3). At variance with the Hopfield
model, the error-length coefficient is always negative in
protein translation. This striking difference arises from
the discrimination in the forward rates, as further clar-
ified in the following. Also in this case, the absolute
value of the error-speed correlations decreases at increas-
ing proofreading efficiency. Ribosomes with impaired
kinetic proofreading should then exhibit stronger error-
speed correlations. A computation of error-speed corre-
lations from experimentally measured rates for different
E. coli strains supports Eq. (13), Fig. 3.
Core network. In both models we considered, kinetic

proofreading reduces the absolute value of the error-
length coefficient without changing its sign. To show this
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effect in general, we consider an arbitrary reaction net-
work where we identify some of the reaction steps as those
implementing kinetic proofreading (Fig.4.a). For exam-
ple, in both models of Fig. 2, the proofreading reactions
are those with rates krp and kwp . The complete network
has an error probability η0 and an error-length coefficient
rηL. We now remove all the proofreading reactions and
define the remaining reactions as the “core network”. In
many practical case the core network is a simple linear
chain of reactions, so that it is easy to compute its error
probability ηcore0 and its error-length coefficient rcoreηL . To
compare rηL and rcoreηL we assume that both η0 and ηcore0

are small so that Eq. (9) holds. We further assume that
proofreading is a relatively rare event that does not sig-
nificantly influence the incorporation times. Taking the
ratio rηL/rcoreηL we therefore obtain

rηL ≈
√

η0

ηcore0

rcoreηL . (14)

Since proofreading reduces the error probability (η0 <
ηcore0 ), it also reduces the absolute value of the error-
length coefficient without changing its sign. We tested
our prediction by computing rηL from experimentally
measured kinetic rates in E. coli ribosomes (Table S1 in
[8], and [15, 20]) and from the T7 DNA polymerase [11]
(see Figure S1 for the T7 datum). Eq. (14) qualitatively
captures the dependence of the error-length coefficient
on the error-correction effectiveness (Fig. 4.b). Quan-
titative discrepancies arise because the assumption that
proofreading does not affect incorporation times partially
breaks down.
The core-network approach qualitatively explains why

the error-speed correlations have different signs in the
Hopfield model (Figure 2.a) and in the protein transla-
tion model (Figure 2.b). Because of the discrimination
in the backward rates, r monomers bind to the enzyme
for a long time in the core network of the Hopfield before
the final incorporation. On the other hand, w monomers
bind to the enzyme for a short time before they are ei-
ther rejected or incorporated. This implies that rcoreηL > 0
and therefore rηL > 0, as showed in Figure 3. Conversely,
the discrimination in the forward rates grants a fast in-
corporation of r monomers in the core network of the
protein translation model. Thus, rcoreηL < 0 and rηL < 0,
consistently with Eq. (13).
In this paper we studied the correlations of the empiri-

cal error in a copy polymer and its synthesis speed. These
correlations probe general features of error-correction
and permit us to classify error-correction mechanisms
into two broad categories: those leading to positive or
to negative error-speed correlations. We showed that the
Hopfield model [21] and a model of protein translation
with discrimination in the forward rates [13–15, 27, 29]
belong to opposite categories. Furthermore, a model of
T7 DNA polymerase with forward discrimination [11]

(a)
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FIG. 4. Proofreading suppresses the error-speed correlations.
(a) Incorporation with a ”core network” complemented by
proofreading reactions. Each block in the figure represents
an arbitrary sub-network with an average flux in the direc-
tion of the arrows. (b) Comparison of Eq. (14) (solid line)
with computation of error-speed correlations from measured
kinetic rates, see Ref. [8]. We considered the ribosomes in
three strains of E. coli : wild type, hypercorrective, and error-
prone [15, 20]. For each strain, we built the core network
by removing the proofreading reactions and computed the
relative change in rηL and η0 between the original and core
networks. We performed the same analysis for a model of T7
DNA polymerase (blue square, see Ref. [8] and [9]). The data
qualitatively agree with Eq. (14).

belongs to the same category of the protein translation
model (see Ref. [8]). This suggests that measurements of
the error-speed correlations could reveal the presence of
forward discrimination in replicative enzymes. Cell-free
translation systems [30, 31] could provide simple and ver-
satile in vitro assays to perform these measurements for
ribosomes. A possible experiment would be to let the sys-
tem translate a given protein for a fixed short time, sep-
arate the products into shorter and longer peptides, and
then quantify errors by measuring the peptide composi-
tion in each class, for example using mass spectroscopy.
Similar experiments for DNA polymerases could bring
insight into poorly characterized chemical reaction net-
works, such as those of human mitochondrial DNA pol-γ
[32], yeast pol-ǫ [33] and pol-δ [34, 35].

The magnitude of the error-speed correlations de-
creases when proofreading effectiveness increases. This
implies that proofreading-deficient enzymes [32–35] and
in-vitro assays that favor mis-incorporation [12, 29] are
best suited to test our theory, for two reasons. First, the
increased magnitude of error-speed correlations in the ab-
sence of error correction makes them easier to measure.
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Second, the poor precision of proofreading-deficient en-
zymes [11] reduces the sample size needed to empirically
estimate error fluctuations.

Our result may also have consequences for the evolu-
tion of genomes. Recent work showed that the cells which
replicates earlier thanks to environmental fluctuations,
contributes more to population growth [36]. With signif-
icant error-speed correlations, the growth of a population
could then be driven by the individuals whose DNA and
proteins have significantly different error fractions from
the population average. This phenomenon could have
played a role in early stages of life.

We underline the conceptual difference between our
results and the speed-error trade-off [5, 6, 20, 26] in par-
ticular as observed in protein translation [27, 29, 37]. In
translation, tuning the concentration of Mg++ ions pro-
vokes an approximately linear trade-off between the av-
erage error and the average reaction speed [27]. This
kind of tradeoffs may depend on the choice of a control
parameter [6, 20]. In contrast, we have shown that fluc-
tuations of velocity and error are negatively correlated
in protein translation for fixed external parameters. It
remains to be explored whether the two results can be
generally connected, in a similar fashion as equilibrium
fluctuations and responses to external forces are related
in statistical physics [38, 39].
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