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Competing time scales generate novelty. Here, we show that a coupling between the time scales im-
posed by instrument inertia and the formation of inter-particle frictional contacts in shear-thickening
suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of
oscillations by varying the two time-scales support our model. The observed oscillations give access
to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover,
the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The
coupling of fast contact network dynamics to a slower system variable should be generic to many
other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.

Concentrated suspensions of non-Brownian (or gran-
ular) particles in a Newtonian solvent occur widely in
industry, e.g., concrete [1] mine tailings [2], and choco-
late [3]. Their viscosity, η, often increases with ei-
ther shear rate, γ̇, or stress, σ [4]. Such shear thick-
ening is now understood as a transition from a low-
viscosity state, with lubricated particle contacts, to a
high-viscosity state, with frictional contacts, as the re-
pulsive force between particles is overcome at a critical
onset stress, σ∗ [5–8].

A phenomenological model of this process by Wyart
and Cates (WC) [9] predicts three types of flow curve,
σ(γ̇). At low volume fraction, φ, a smooth increase con-
nects two constant-slope (= viscosity) branches in σ(γ̇),
giving rise to continuous shear thickening (CST). Above a
critical φDST, σ(γ̇) becomes S-shaped, with a backwards-
bending (dσ/dγ̇ < 0) region connecting the two branches,
giving discontinuous shear thickening (DST). Finally,
above some φm, σ(γ̇) has no flowing upper branch and
it bends back to γ̇ = 0: the system shear jams at high
stresses.

In the CST regime, suspensions flow steadily and ho-
mogeneously, and the WC model fits data from nearly-
monodisperse hard sphere systems [10, 11]. In the DST
regime, there is a jump in σ as the imposed γ̇ is increased
[12], while under imposed σ, neither homogeneous nor
shear-banded steady flow is possible [13]. There is no
general model for the system-specific flow in this regime.
Recent experiments [14, 15] and simulations [16] focus
on banding: spatial variation with high-σ and low-σ re-
gions. Many systems also show large temporal fluctu-
ations [17], which sometimes begin as ‘relaxation oscil-
lations’: γ̇ periodically drops precipitously to a nearly-
jammed state [18–20], with a frequency that increases
with applied stress [13, 21]. We extend the WC model to
account quantitatively for such oscillations.

The key physics is the competition between the dy-
namics of frictional contact formation and a ‘system vari-
able’, here the acceleration of the rheometer geometry

[18, 19]. When the ratio of the time scale of the for-
mer to that of the latter is small, we predict homoge-
neous flow with relaxation-type γ̇ oscillations. Fitting
the observed σ-dependence of the oscillation frequency
reveals and quantifies an additional time scale, that in-
trinsic to the relaxation of frictional contacts after forma-
tion. Thus, rheometer geometry inertia, often considered
an artefact, can be used to probe suspensions near jam-
ming.

WC introduced a stress-dependent steady-state frac-
tion of frictional contacts, f̂ ; simulations [16, 22] find

f̂(σ) = exp
(
−(σ∗/σ)β

)
, (1)

with β . 1. f̂ controls the jamming point, ϕJ, at which
η → ∞. Here we use weight fractions, ϕ, due to the
porosity of our main model system (cornstarch) [23]. At

σ � σ∗, f̂ = 0, and the system jams at random close
packing, ϕJ = ϕrcp. When σ � σ∗, f̂ → 1 and the
system jams at some ϕm < ϕrcp. The WC model linearly
interpolates between these two limits:

ϕJ(f̂) = ϕmf̂ + ϕrcp(1− f̂). (2)

The distance to jamming then determines η via

η(ϕ,ϕJ) = ηs

[
1− ϕ/ϕJ(f̂)

]−2

, (3)

with ηs the solvent viscosity. At a given weight fraction, f̂
increases with stress, lowering the jamming point, which
in turn increases the viscosity, η(σ) ≡ η{ϕ,ϕJ[f̂(σ)]}.
At ϕDST < ϕ < ϕm, the flow curve, σ(γ̇), becomes S-
shaped, Fig. 1(a) (··), with a region where dσ/dγ̇ < 0.
At ϕ > ϕm, shear jamming (SJ) is predicted, with the
flow curve doubling back to γ̇ = 0 when ϕJ(σ) = ϕ,
Fig. 1(a) (- -).

In non-steady flow, e.g. on reversal [6, 24], the con-
tact network of the suspension takes finite time to adapt.
Thus, the fraction of frictional contacts at any one in-
stant, f(t), may differ from its steady-state value, f̂ ,
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FIG. 1. Imposed-stress rheology. (a) Flow curves: dimen-

sionless stress vs. dimensionless average shear rate, ΣE(Γ̇),
and absolute, σE(γ̇) at given weight fractions, ϕ. Dashed
lines: WC model for ϕm = 0.457, ϕrcp = 0.546, β = 0.94
(⇒ ϕDST = 0.445) and σ? = 5.1 Pa at given ϕ (- -) and
ϕ = 0.45 (··). Blue, ϕ < ϕDST; grey, ϕDST < ϕ < ϕm; red,

ϕ > ϕm. Symbols: ΣE vs. time-averaged Γ̇ for cornstarch sus-
pensions in 50 wt.% glycerol-water. Error bars denote stan-
dard deviation from three up-sweeps. (b)-(d) Time-dependent

experimental shear rate, Γ̇(t), for ϕ = 0.48, showing respec-
tively: (b) steady flow below the onset of shear thickening, (c)
periodic shear-rate oscillations and (d) aperiodic flow at high
stress. (e) Rheometric geometry: infinite plates, separation
h, velocity u (γ̇ = u/h), areal density ρA and applied stress
σE . (f) Experimental geometry: rotating plates, radius R,
gap height h, relative angular velocity Ω (γ̇ = ΩR/h), rota-
tional inertia I and applied torque TE = σEπR

3/2. Equiva-
lent ρA = 2I/πR4, using Eq. 5.

given by Eq. 1, towards which f(t) relaxes. Simulations
show that f evolves with the accumulated strain [5]; so
following previous work [5, 25], we write

df

dt
= − γ̇

γ0

[
f − f̂(σ)

]
, (4)

with a characteristic strain, γ0 (and γ̇ ≥ 0). We now use

Eqs. 2 and 3 to relate η to f , rather than just f̂ .
External stress, σE, is applied through the system

boundaries. In a rheometer, this is the ‘geometry’, which
has far higher mass than the suspension for a typical gap
height, h, between the boundaries [26], Fig. 1(e). In the

steady state, σE = η(f̂)γ̇, the sample stress, σ. When
dγ̇/dt 6= 0, force balance between the geometry and the
sample gives

ρAh
dγ̇

dt
= σE − η(f)γ̇, (5)

with ρA the geometry’s areal density. Equations 4
and 5, being two-dimensional, cannot capture aperiodic
flow, but can account for γ̇-oscillations and elucidate the
physics of unsteady flow in shear-thickening suspensions.

Measuring time in units of the geometry inertial time
scale, ti = ρAh/ηs, we rewrite Eqs. 5 & 4 as:

dΓ̇

dτ
= ΣE − ηr(f)Γ̇ ≡ g1(Γ̇, f), (6)

df

dτ
= − Γ̇

ε

[
f − f̂(ηr(f)Γ̇)

]
≡ g2(Γ̇, f), (7)

where τ = t/ti. Other dimensionless variables are shear
rate, Γ̇ ≡ dΓ/dτ = γ̇ηs/σ

∗; applied stress, ΣE =
σE/σ

∗; viscosity, ηr = η(f)/ηs; sample stress, ηr(f)Γ̇ =
η(f)γ̇/σ∗; and, strain, Γ = η2

s /(ρAhσ
∗).

The time scale for contact network formation, tc =
γ0ηs/σ

∗, competes with the inertial time, yielding our
key dimensionless parameter,

ε =
tc
ti
≡ γ0η

2
s

ρAhσ∗
. (8)

When ti � tc, i.e. ε � 1, Eqs. 6 and 7 form a singu-
lar autonomous system [27], which may undergo a Hopf
bifurcation to show relaxation oscillations as the control
parameter ΣE is varied [28].

For a given ϕ and ΣE, a fixed point occurs where
the nullclines g1 = 0 and g2 = 0 intersect, Fig. 2(a).

Analysing the Jacobian [29],
(
∂g1/∂Γ̇ ∂g1/∂f

∂g2/∂Γ̇ ∂g2/∂f

)
, shows that

this fixed point is unstable if

ε < εc = −Γ̇(dΓ̇/dΣE), (9)

which, since ε > 0, requires dΓ̇/dΣE < 0, i.e. a
backwards-bending flow curve, see Supplemental Ma-
terial for derivation [30]. Thus, the DST-boundary
(dΓ̇/dΣE=0) forms the lower boundary of our region of
potential instability, Fig. 2(b). The upper boundary of
this occurs at shear jamming, ϕJ(ΣE) = ϕ, where the
flow curve touches the vertical axis so that Γ̇ = 0. Above
this boundary, no flow is possible. Between these two
boundaries, εc(ϕ,ΣE) peaks at εmax

c = 2×10−5: instabil-
ity may occur between DST and shear jamming whenever
ε < 2×10−5 [31]. Physically, at such small ε (i.e. ti � tc),
the suspension thickens before the geometry slows, so the
sample stress rises, driving f̂ higher and causing further
thickening in a vicious cycle, pushing the system away
from the steady state.

We now describe our dynamical system by phase-plane
trajectories that depend parametrically on τ . Consider
the regime ϕDST ≤ ϕ < ϕm with S-shaped flow curves,
Fig. 1(a) (- -). The f -nullcline, Fig. 2(a), reflects the
shape of the steady-state flow curve [32]. Equations 6 and
7 show that trajectories point inwards everywhere on the
rectangle defined by Γ̇ = 0, Γ̇ = Γ̇† (where the Γ̇-nullcline
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FIG. 2. Limit-cycle behavior for Eqs. 6 and 7. (a) Phase-plane

schematic for ϕDST < ϕ < ϕm. Red line, Γ̇-nullcline; red
hatched shading, g1 > 0; blue line, f -nullcline; blue shading,
g2 > 0. Fixed point, FP. On the black rectangle, trajectories
point inwards, indicating the existence of a limit cycle if FP is
unstable. (b) Critical stability criterion value, εc, from Eq. 9.
Solid black lines εc = 0; grey shading, shear jammed. (c)
Limit cycle for S-shaped flow curve; ϕ = 0.455 and ΣE = 3.0;
WC model parameters from Fig. 1. Black line, numerical
solution for ε = 10−9; shading as in (a). (d) Limit cycle for
SJ flow curve; ϕ = 0.475 and ΣE = 3.0; grey shading, shear
jammed; other parameters and shading as in (c).

intersects the Γ̇ axis), f = 0 and f = 1, Fig. 2(a). How-
ever, trajectories point outwards on any infinitesimally-
small loop around the fixed point if it is unstable. The
Poincaré-Bendixson Theorem [29] then predicts a limit
cycle in the region depicted in Fig. 2(a) if ε < εc.

A numerically-calculated limit cycle after the onset of
DST is shown in Fig. 2(c). To understand this cycle,
divide Eq. 7 by Eq. 6 to obtain

ε

[
ΣE

Γ̇
− ηr(f)

]
=
[
f − f̂(ηr(f)Γ̇)

] dΓ̇

df
. (10)

If ε → 0, Eq. 10 requires dΓ̇/df → 0 (vertical lines) or

f → f̂(Σ) (f -nullcline). If ε � 1, starting at (0, 0), the
system follows the f -nullcline (g2 = 0, g1 > 0), Fig. 2(c),
at a rate controlled by ti (Eq. 6). At B, the system jumps
vertically to join the ‘upper branch’ of the f -nullcline at
C. It now follows the ‘upper branch’ of the f -nullcline
(g2 = 0, g1 < 0) until it reaches D, where it drops ver-
tically to A, and the process repeats: we have a limit
cycle. As a consistency check, the ‘jump’ BC and hence
the limit cycle relies on γ̇ not changing (t � ti) as a
large number of frictional contacts form and the suspen-
sion shear thickens (t > tc), i.e. ε� 1, as assumed.

At ϕ > ϕm, Fig. 2(d), the ‘jump’ from B takes the
suspension towards jamming, η → ∞ at C, whereupon
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FIG. 3. Tuning shear-rate oscillations for ϕ & ϕDST. (a)-
(b) Low viscosity: cornstarch in 50 wt.% glycerol-water, ϕ =
0.47; relaxation oscillations. Red, experimental data; black,
model: ε = 2.7 × 10−6 , flow curve parameters from Fig. 2.
Traces aligned by eye. (c)-(e) Medium viscosity: cornstarch in
67 wt.% glycerol-water, ηs = 15 mPa s at ϕ = 0.45 & ϕDST ≈
0.44; damped oscillations in a narrow range of stress. (f) High
viscosity: cornstarch in 85 wt.% glycerol-water, ϕ = 0.44 &
ϕDST ≈ 0.44; DST with no relaxation oscillations. (g) 4 µm
silica spheres in 87 wt.% glycerol-water (ηs = 151 mPa s and
ε = 1 × 10−4) at φ = 0.58 & φm = 0.57; DST with no large
shear-rate oscillations. (h)-(i) Silica in dimethyl sulfoxide-
water mixture (ηs = 3.4 mPa s and ε = 2×10−7) at φ = 0.574;
shear-rate oscillations.

γ̇ abruptly goes to zero, giving a horizontal ‘jump’ to
D, from where the system drops back to A on the f -
nullcline, again giving a limit cycle. Note that the CD
part of our limit cycle probes our system close to jam-
ming. Unlike in conventional steady-state rheology [33],
our system should remain homogeneous: the time needed
to traverse BCD is simply too short to allow finite par-
ticle migration.

To validate our model, we first characterized a shear-
thickening suspension known to show oscillations [13].
Cornstarch (Sigma Aldrich, particle diameter ≈ 14 µm
and polydispersity ≈ 40% from static light scatter-
ing [13]) was dispersed into 50 wt.% glycerol-water (ηs =
6 mPa s). We used a TA Instruments DHR-2 with rough-
ened parallel plates (radius R = 20 mm and h = 1.0 mm
for flow curves, 1.5 mm for time dependence), Fig. 1(f).
Rim shear rates, γ̇ = ΩR/h, and apparent stresses,
σE = 2TE/πR3, come from the applied torque, TE ,
and measured angular velocity, Ω. Cornstarch particles
are porous [23]; so we quote weight fractions, ϕ, using
freshly-prepared samples and monitoring reproducibility.

The WC model captures credibly the time-averaged
flow curves of this system for ϕ < ϕDST, Fig. 1(a) (- -),
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with ϕm, φrcp, σ∗ and β determined from fitting the
steady-state rheology (see SM [30]), averaging 3 upsweeps
at 10pts./decade from 0.1 Pa to fracture with 10 s aver-
age and 5 s delay, separately ensuring reversibility. At
ϕ > ϕm, the WC model works until the predicted flow
curve bends backwards, Fig. 1(a) (- -). Up to this point,
the flow is steady: γ̇ is constant in time, Fig. 1(b). At
higher stress, the flow starts to oscillate, Fig. 1(c), before
becoming aperiodic, Fig. 1(d) [13].

The measured geometry moment of inertia, I, gave
ρA ≡ 2I/πR4 = 175 kg m−2 [30]. Imposed-rate experi-
ments gave γ0 = O(10−1) [30]. Thus, tc = 1.1× 10−4 s,
ti = 44 s, and ε = 2.7 × 10−6, far below the εmax

c =
2×10−5 for observing instability when ϕDST < ϕ < ϕrcp.
Solving Eqs. 6 and 7 numerically at ϕ = 0.47 and
ΣE = 0.93, we find relaxation oscillations quantitatively
matching experiments with no free parameters, Fig. 3(a).

Next, we varied ε ∝ η2
s by increasing the solvent

glycerol proportion, see SM for time-averaged rheology
[30]. For ηs = 15 mPa s, ε ∼ 2 × 10−5 & εmax

c , only
damped oscillations in a narrow stress range were ob-
served, Fig. 3(c)-(e). For ηs = 75 mPa s, ε ∼ 3× 10−4 �
εmax
c , no shear-rate oscillations are seen at stresses and

weight fractions in the DST-regime, Fig. 3(f). Oscilla-
tions could also be eliminated by only reducing h (in-
creasing ε & εmax

c , see SM [30]), however large variation
of ρA is restricted by rheometer design. We also studied
shear-thickening silica suspensions (diameter 4 µm) [11],
in which oscillations have not been reported before. Ex-
periments were performed using an Anton-Paar MCR302
in a parallel-plate geometry (R = 20 mm, h = 1.5 mm)
with ρA = 400 kgm−2, see SM for details [30]. In 87 wt.%
glycerol-water with ηs = 151 mPa s and ε = 1× 10−4, no
oscillations were seen, Fig. 3(g). Reducing ηs to 3.4 mPa s
using a dimethyl sulfoxide-water mixture, giving ε =
2×10−7, we found relaxation oscillations, Figs. 3(h) and
3(i). All our available data are consistent with the pre-
dicted εmax

c = 2× 10−5 for instability.
Figure 3(a) pertains to σE at the onset of DST. As

σE increases beyond this point, the oscillation frequency,
ν, increases [13], and the agreement between model and
experiment worsens, Fig. 4. As the system comes ever
closer to jamming at each precipitous drop in Γ̇, the
strain-dependent ansatz for f -relaxation, Eq. 4, becomes
increasingly ineffective. The predicted time taken to tra-
verse DA in the limit cycle, Fig. 2(d), is lengthened com-
pared to reality (cf. slow onset in Fig. 4 inset).

We therefore infer the existence of an additional in-
trinsic, strain-independent, mechanism for relaxing f to-
wards its steady-state value [34] and modify Eq. 4 to read

df

dt
= −

(
γ̇

γ0
+

1

tr

)[
f − f̂(η(f)γ̇)

]
, (11)

with a new relaxation time tr. There are now two contact
relaxation mechanisms, dependent on strain (∝ γ̇/γ0) or
time (∝ 1/tr). The latter dominates as γ̇ → 0, near
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r = 0 s−1
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FIG. 4. Oscillation frequency, ν, vs. applied stress σE. Points:
ν for cornstarch in 50 wt.% glycerol-water, from Fourier trans-
form of 30 s upwards stress sweep (excluding first 2 s) in steps
of 0.796 Pa: ϕ = 0.47 (�), ϕ = 0.48 (•). Lines, model predic-
tions for ε = 2.7×10−6 (see legend). Inset: effect of additional
time-dependent relaxation on oscillation shape.

jamming, so the time taken for DA shortens, decreasing
the period of the limit cycle, as observed.

Fitting the ν(σE) data with this new model, Fig. 4 [35],
gives tr ≈ 0.24(5) s [30]. Since tc/tr = 5 × 10−4 � 1,
the strain-dependent mechanism dominates away from
jamming [30]. Interestingly, tr ≈ 0.24 s is comparable
to the relaxation time for cornstarch grains pushed into
adhesive contact, ∼ 0.5 s, so that surface chemistry mat-
ters [36].

The mechanism we propose for relaxation oscillations
in shear-thickening suspensions, depending on flow-curve
shape and geometry inertia, appears generic. It is there-
fore perhaps a puzzle why such oscillations have not been
more widely reported. One reason is the use of high-
viscosity solvents, thus giving ε� εmax

c . More prevalent
could be the breakdown of simple shear flow where sur-
face tension no longer confines the particles as sample
stress peaks [10, 37] at C in the limit cycle, Fig. 2(d),
causing fracture [38]. With only two dynamical variables,
lacking spatial variation, our model cannot capture such
inhomogeneous flow. It nevertheless well captures the de-
velopment of relaxation oscillations en route to aperiodic
unsteady flows, which are widely seen [14, 15, 17, 39].

Our model generalized to Eq. 11 has allowed us to ex-
tract an intrinsic contact-relaxation time scale, tr, which
is difficult to access using other methods such as shear
reversal [6] or cessation [34] due to instrument artifacts.
Instead, our method of accessing tr relies on modelling
the coupling with one such artifact, viz., geometry iner-
tia. tr becomes important in modelling the flow prop-
erties whenever the suspension comes close to jamming
and the shear rate drops. With our protocol for extract-
ing this relaxation time, future work should be able to
clarify the underlying physical mechanism, which may
include particle softness [40], surface chemistry [41] or
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long-range repulsion [42].

Finally, coupling between fast frictional-contact-
network dynamics and a slower ‘system variable’, and
hence the resulting types of behavior, should be found in
many types of dense suspension flow. Thus, for exam-
ple, in vorticity banding, particle migration is slow [16];
in micro-channel oscillations, rearrangement due to fluid
permeation is slow [43, 44]; in the settling of a ball in
a suspension, the ball’s inertial dynamics are slow [45].
Interestingly, relaxation-type oscillations, with periodic
bursts of brief near-jamming episodes, have been ob-
served in the pipe flow of polymethylmethacralate parti-
cles [43], the settling velocity of a ball in cornstarch [45]
and the shear rheology of polystyrene particles [18] (com-
pare especially data presented in the latter two cases
with, e.g., our Fig. 2(c)). It is therefore possible, per-
haps likely, that the kind of physics we have modelled
may be relevant far beyond the data sets presented here.
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