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In micellar surfactant solutions, changes in the total number of micelles are rare events that
can occur by either of two mechanisms - by stepwise association and dissociation via insertion and
expulsion of individual molecules, or by fission and fusion of entire micelles. Molecular dynamics
simulations are used here to estimate rates of these competing mechanisms in a simple model of block
copolymer micelles in homopolymer solvent. This model exhibits a crossover with increasing degree
of repulsion between solvent and micelle core components, from a regime dominated by association
and dissociation to a regime dominated by fission and fusion.

Spherical micelles are simple self-assembled structures
that form in solutions of both small molecule and macro-
molecular surfactants [1, 2]. Micelles are also the building
blocks of a variety of complex phases of sphere-forming
diblock copolymers [3–6]. The slowest dynamical pro-
cesses in micellar systems are generally those that involve
a change in the total number of micelles. Understand-
ing of these slow processes is critical to understanding of
applications that rely on adsorption of surfactant to an
interface, such as wetting, emulsification, and foaming
[1, 2], because the rate of adsorption is closely related
to the rate at which micelles can break down near an
interface [7]. Analogous processes also appear to play a
crucial role in phase transformations and equilibration in
melts of sphere-forming block copolymers [5, 6].

Experiments in which equilibrium of a micellar solution
is disturbed by a small change in temperature, pressure,
or concentration have demonstrated the existence of two
dynamical processes with disparate time scales: a “fast”
process with a typical relaxation time τ1 of microseconds
or less and a “slow” process with a much longer relax-
ation time τ2 [8–14]. The fast process is one in which
micelles grow or shrink slightly via insertion or expul-
sion of individual free molecules, without changing the
number of micelles. The slow process instead involves a
change in the total number of micelles [11–14].

The mechanism of the fast process is well understood,
but the mechanism of the slow process has remained un-
clear. The slow process in an equilibrated solution could
occur primarily either by association and dissociation or
by fission and fusion [14]. In the association/dissociation
mechanism, a new micelle can occasionally form by aggre-
gation of dissolved free surfactant molecules, or disappear
by dissociation into free molecules. In the fission/fusion
mechanism, the number of micelles can instead increase
by one when a micelle undergoes fission or decrease by
one when two micelles undergo fusion. Several techniques
can be used to measure the rate of the slow processes, but
it is more difficult to devise experiments that can distin-
guish these two mechanisms.

The best developed theory of micelle kinetics is the
stepwise-growth theory [11]. This theory assumes that

both fast and slow processes arise from strictly stepwise
changes in micelle size, by insertion and expulsion of in-
dividual free molecules, and that rates of fission and fu-
sion are negligible. The resulting theory [11–20] is closely
analogous to the classical Becker-Döring theory of step-
wise nucleation of liquid from a vapor [21].

Theories that allow for fission and fusion processes are
much less well developed. Several authors have formu-
lated population models that allow for micelle fission and
fusion as well as step-wise processes [22–26]. Such mod-
els have, however, thus far relied on estimates of the rate
constants for fission and fusion that either assume that
fusion is diffusion-limited or that mimic the effects of a
barrier to fusion via the introduction of an adjustable pa-
rameter. The predictive power of such models has thus
been limited primarily by our limited understanding of
the magnitude of barriers to fission and fusion.

Spontaneous creation and destruction of micelles in an
equilibrated micellar solution generally occur too infre-
quently to be observed in straightforward molecular dy-
namics (MD) simulations. Simulation studies of kinet-
ics have thus far focused instead on the comparatively
rapid initial formation of micelles from a supersaturated
solution [27], and on exchange of individual molecules
[28]. Here, we combine MD simulation and population
modelling to estimate and compare equilibrium rates of
the competing association/dissociation and fission/fusion
processes for a simple simulation model of an non-ionic
block copolymer surfactant and improve upon prior diffu-
sion limited estimates. To do so, we analyze the behavior
of a micelle population model using model parameters ex-
tracted from molecular simulations. Many details of the
simulations and analysis presented here are discussed in
two related longer papers [29, 30].

Population Model: We consider a dilute micellar so-
lution in which micelles coexist with a concentration
c1 of free surfactant molecules. Let cn(t) denote the
concentration of micelles that contain n surfactants at
time t. The equilibrium concentration of such micelles,
denoted by c∗n, is given by a Boltzmann distribution
c∗n ∝ exp(−Wn/kBT ), where Wn is the free energy re-
quired to form a micelle of aggregation number n from a



2

reservoir of free surfactants. The free energy Wn charac-
teristically has a local minimum at some value ne, which
is the most probable micelle aggregation number.

We consider a general dynamical model that allows
for both stepwise insertion and expulsion and fission and
fusion. Fusion of clusters of aggregation number n and
n′ to form a cluster of size n + n′ is assumed to occur
at a rate r+n,n′ = k+n,n′cncn′ per unit volume. Fission
of an aggregate of size n + n′ into daughters of size n
and n′ occurs at a rate r−n,n′ = k−n,n′cn+n′ . Stepwise
insertion and expulsion of individual molecules is treated
as a special case in which n or n′ is equal to 1. The time
dependence of cn(t) is controlled by a master equation

dcn
dt

=

n/2∑

n′=1

Jn−n′,n′ −

∞∑

n′=1

νn,n′Jn,n′ , (1)

where Jn,n′ = r+n,n′ − r−n,n′ . Here, νn,n′ = 1 + δn,n′ is a
coefficient giving the number of clusters of a size n con-
sumed by fusion of clusters of size n and n′. Detailed
balance requires that Jn,n′ = 0 for all n and n′, implying
that k+n,n′c∗nc

∗

n′ = k−n,n′c∗n+n′ . The independent input pa-
rameters required by this model are thus the equilibrum
concentrations or cluster free energies Wn for all n, and
the rate constants k+n,n′ or k−n,n′ , which are related by
detailed balance. The simpler stepwise model only re-
quires values for the insertion rate constant k+n,1 or the

expulsion constant k−n,1.

Simulation Model: We have analyzed a simple simula-
tion model of nonionic diblock copolymer surfactants in a
polymer solvent. [31–34] Each copolymer is a chain of 32
beads, with 4 B beads and 28 A beads. Each “solvent”
molecule is a homopolymer of 32 A beads. Pairs of i and
j beads separated by a distance r less than a cutoff σ in-
teract via a pair potential Upair(r) = ǫij(1− r/σ)2, with
ǫAA = ǫBB = 25kBT and ǫAB ≥ ǫAA. Bonded beads
also interact via a potential Ubond = κr2/2 with κ =
3.048kBT/σ

2. Simulations were performed at constant
temperature kBT = 1 and pressure P = 20.249kBT/σ

3,
giving an average bead concentration c ≃ 3σ−3 [32, 33].
Simulations were performed at several values of a pa-
rameter α ≡ (ǫAB − ǫAA)/kBT that controls the driving
force for micellization. Well-defined micelles form only
for α > 8. Extensive simulations were performed at α =
10, 12, 14, and 16. Different types of simulation were
performed to estimate different parameters.

Equilibrium Properties: Thermal equilibrium proper-
ties were obtained from hybrid Monte Carlo (MC) /
molecular dynamics (MD) simulations that were per-
formed in a semi-grand ensemble in which the number
of copolymer molecules fluctuates but the total num-
ber of copolymer and solvent chains remains constant
[35]. These simulations use a MC move that can convert
molecules of one type into the other by the toggling the
bead type of the 4 beads that form the minority block

of a copolymer molecule. This allows very efficient sam-
pling when both species are polymers of the same length,
which is why we chose to study such a system. These
simulations also used a hybrid MC/MD move in which
short MD simulations are used as proposed MC moves
[36]. We suppress appearance of states with more than
one micelle in the simulation, by rejecting all MC moves
that produce such states [29].
The acceptance criteria for MC moves is designed to

sample the Boltzmann distribution for a system with a
modified potential energy U ′ = U − V (N), in which
U is the physical potential energy and V (N) is a um-
brella potential that depends only the total number of
copolymers in the simulation cell, which we denote by
N . The potential V (N) is chosen adaptively to obtain a
nearly flat probability distribution Psim(N) for N . The
Gibbs free energy G(N) for the system is then given by
G(N) = −kBT lnPsim(N) + V (N). Results of these bi-
ased simulations are then used to reconstruct properties
that would be obtained in a semi-grand canonical en-
semble describing a system that can exchange molecules
with a reservoir of a specified exchange chemical poten-
tial ∆µ, which is the difference between the copolymer
and hompolymer chemical potential.
We define the critical micelle concentration cc to be

the average free molecule concentration c1 in a state in
which the average number of free molecules is equal to
the number of molecules in micelles, or in which the total
concentration c is twice c1. Let ∆µc denote the value of
∆µ in this state. The mole fraction of free copolymers in
this state, denoted by φc, decreases exponentially with α,
and is found to be φc = 0.0163, 0.0054, 0.0017, 0.00072
for α = 10,12,14,16, respectively.
Values of the cluster formation free energy Wn have

been extracted from measurements of the frequency of
appearance of cluster of each size in a semi-grand canon-
ical ensemble [29]. The most probable aggregation num-
ber ne is the value at whichWn is at a local minimum, for
which we obtain ne ≃ 55, 70, 83, and 97 for α =10, 12, 14,
and 16. Fig. 1 shows the calculated values of free energy
Wnas a function of n at ∆µ = ∆µc. The local maximum
in Wn, at a value of n denoted by nt, is the transition
state for stepwise dissociation or association. The barrier
to dissociation, denoted by ∆Wd = Wnt

−Wne
, increases

from 3-14 kBT over this range of α values.
Molecular Insertion and Expulsion Rates: The rate

constants k+n,1 and k−n,1 for copolymer insertion and ex-
pulsion were measured for micelles of varying size in MD
simulations of systems that contain a single micelle in
coexistence with a few free copolymer molecules, by di-
rectly measuring the rates at which copolymers enter and
leave the micelle [30].
Equilibrium Dissociation Lifetime: Given estimates of

Wn and the insertion rate constant k+n,1, it is straightfor-
ward to compute the average time required for an existing
micelle to undergo dissociation via purely stepwise pro-
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FIG. 1. Micelle free energy W plotted vs. micelle aggregation
number n at ∆µ = ∆µc. Results are shown for α = 10, 12,
14, and 16, from lowest to highest free energy barrier. Results
are shifted so that Wn = 0 at the micellar minimum, n = ne.

cesses. We call this time the equilibrium dissociation life-
time, denoted by τd. Values of τd have been computed for
each value of α at ∆µ = ∆µc by a method closely anal-
ogous to that used to compute nucleation rates in the
Becker-Döring theory of stepwise vapor phase nucleation
[30].

Intrinsic Fission Lifetimes: Preliminary MD simula-
tions of pre-assembled micelles of varying size showed
that micelles with sizes somewhat larger than ne sponta-
neously fission frequently enough to be observed in long
MD simulations, with an average lifetime that decreases
rapidly with increasing n. The fact that the fission life-
time decreases rapidly with increasing n suggests a pic-
ture of fission as a two step process in which fission typi-
cally occurs via a rare fluctuation of n to a value greater
than ne via stepwise insertion, followed by fission of the
enlarged, less stable micelle. This picture suggested that
a study of fission in enlarged micelles, with n > ne might
allow us to estimate the overall rate.

To quantify fission rates, MD simulations of individual
pre-assembled micelles were performed for each value of
α =10 - 16 at several values of n. For each choice of
values for α and N , independent MD simulations were
performed for many equivalent systems, each containing
one micelle. The times at which all fission events oc-
curred were recorded, and the resulting set of times was
used to estimate an intrinsic fission lifetime for a micelle
of known size n, which we denote by τfisn [30].

Fig. 2 shows the resulting estimates of ln τfisn vs. n for
α = 10, 12, 14, and 16. The value of n in this plot is the
average number of copolymers in the micelle just prior
to fission. For each value of α, ln τfisn is found to depend
nearly linearly on n, with similar slopes for different val-
ues of α. The dependence of ln τfisn upon both n and α
is found to be well described over this range as a linear
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FIG. 2. Semi-log plot of the intrinsic fission lifetime τfis

n in
units of Lennard-Jones time as a function of micelle aggrega-
tion number n, for values of α = 10, 12, 14, and 16 (left to
right). Error bars show root-mean-squared statistical errors.
Solid lines are predictions of the global fit to Eq. (2), plotted
at these four values of α.

function of both n and α, of the form

ln τfisn (α) = A+Bα+ Cn (2)

with A = 10.855, B = 2.0984 and C = −0.1877.
Equilibrium Fission Lifetime: Given estimates of Wn

and τfisn as functions of n, we can compute the time it
would take a randomly chosen micelle to undergo fission,
in the absence of stepwise dissociation. We call this the
equilibrium fission lifetime, denoted by τf . The corre-
sponding rate 1/τf is given by

1

τf
=

∑

n

Pn
1

τfisn

(3)

where Pn ∝ e−Wn/kBT is the probability that a randomly
chosen micelle have size n. We have computed τf at ∆µ =
∆µc at each value of α using MC results for Pn and using
Eq. (2) to approximate the dependence of τfisn on n.
In Ref. [30], for comparison, we also analyze a simpli-

fied theory that is based on the assumption that fusion
is diffusion limited. Because predicted fusion and fission
rates are related by detailed balance, this assumption
can be used to compute corresponding predictions for
τfisn . Within the range of values of n in which we were
able to measure τfisn , measured values for τfisn exceed those
predicted by this model by factors of 103 or greater, con-
firming the existence of a substantial barrier to fusion.
Fig. 3 shows a comparison of the resulting predic-

tions for the lifetime τd for stepwise dissociation (dia-
monds) and two different estimates of the lifetime τf for
fission (circles and squares) at α = 10, 12, 14 and 16
and ∆µ = ∆µc. The predicted dissociation lifetime τd
increases much more rapidly with increasing α than τf .
As a result, we find that association and dissociation oc-
cur much more frequently than fission and fusion for low
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FIG. 3. Predicted values of the dissociation lifetime τd (blue
diamonds) and fission lifetime τf plotted vs. α = (αAB −

αAA)/kBT , for α = 10, 12, 14, and 16. Squares are estimates
of τf computed using Eq. 2 for all values of n, while circles are
an upper bound obtained by only accounting for fission events
that occur in the range τfis

n for which the intrinsic lifetime was
directly measured.

values of α, α < 14, but that fission and fusion dominate
at the highest value, α = 16.

The estimate of τf shown by squares in Fig. 3 was
obtained by using Eq. (2) for τfisn to extrapolate our re-
sults to values of n somewhat below the range over which
we actually measured τfisn . To check whether our main
conclusion is sensitive to this extrapolation, we have also
considered a model in which fission is artificially sup-
pressed outside the range of values of n in which τfisn was
measured. To do this, we set τfisn = ∞ for all values of
n for which Eq. (2) yields τfisn greater than 5 × 106 LJ
times units, which is near the upper limit of values that
we could measure. Because this model intentionally ig-
nores the vast majority of expected fission events, most
of which involve somewhat smaller micelles [29], it yields
an approximate upper bound on τf . For α = 16, the
resulting bound on τf (open circles) is almost 2 orders
of magnitude greater than the estimate obtained by ex-
trapolating, but still yields τf ≪ τd. The conclusion that
fission and fusion dominate at α ≥ 16 thus appears to be
robust.

Our analysis thus predicts a crossover with increasing
α (i.e,. increasing AB repulsion) from a regime in which
micelle birth and death occur predominantly by stepwise
association and dissociation to a regime of higher α in
which fission and fusion dominate. This crossover occurs
because τd increases much more rapidly than τf with in-
creasing α. Note that τd increases by six orders of mag-
nitude over the range shown in Fig. 3, while τf appears
to increase by 2-4 orders of magnitude. The theory of
step-wise dissociation [11, 15–17] predicts a dissociation
rate τ−1

d ∼ k−nt,1
exp(−∆Wd/kBT ) in which ∆Wd is the

barrier to dissociation, corresponding to the difference
between minimum and maximum values of Wn in Fig.
1. The value of the elementary rate k−nt,1

≃ k+nt,1
c1 in

a system with c1 = cc varies with α nearly proportion-
ately to cc, which decreases by a factor of 20 over this
range. The more important factor in the increase in τd
is the increase in the Arrhenius factor exp(−∆Wd/kBT ),
which decreases by a factor of nearly 105 as a result of
the increase in the barrier ∆Wd. The magnitude of the
increase in τd is not surprising in light of previous predic-
tions for polymeric micelles [15, 16]. What we find more
surprising is how much less τf changes with α.

Since the seminal work of Aniansson and Wall [11],
most detailed theoretical analyses of micelle kinetics have
assumed the validity of the step-wise growth mechanism
for the slow process [11–13, 15–19, 37], thus dismissing
the possibility of fission and fusion. Here, we have com-
bined several simulation and analysis techniques to con-
struct the first quantitative comparison of rates for these
competing mechanisms for a simple simulation model of
block copolymer micelles. The results show the existence
of a crossover with increasing degree of repulsion between
unlike components (corresponding to increasing interfa-
cial tension and decreasing solubility) from a weakly-
immiscible regime in which micelles are created and de-
stroyed primarily by step-wise association and dissocia-
tion to a strongly-immiscible regime in which fission and
fusion dominate. Most block copolymer systems presum-
bably lie in the strongly-immiscible regime. This conclu-
sion is consistent with the conclusions of several authors
who have argued on experimental grounds for the rele-
vance of fission and fusion in solutions of relatively insol-
uble nonionic surfactants [14, 17, 23, 38, 39] ionic surfac-
tants at high salt concentrations [14, 40, 41] on the basis
of analyses of the concentration dependence [14, 38, 40]
and absolute magnitude [17, 23, 39] of the slow relax-
ation time τ2. Our results are not consistent with the
predictions of Halperin and Alexander [37], who consid-
ered strongly immiscible block copolymers micelles and
predicted that fission and fusion would be irrelevant in
this limit. Further simulation and theoretical work is
clearly needed to determine the generality of our conclu-
sions and to study the mechanisms and barriers for fission
and fusion. We hope that this work inspires renewed ex-
perimental and theoretical interest in this prototypical
example of a slow dynamical process in soft matter.
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