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Abstract 

Optical tweezers microrheology (OTM) offers a powerful approach to probe the 
nonlinear response of complex soft matter systems, such as networks of entangled polymers, over 
wide-ranging spatiotemporal scales. OTM can also uniquely characterize the microstructural 
dynamics that lead to the intriguing nonlinear rheological properties that these systems exhibit. 
However, the strain in OTM measurements, applied by optically forcing a micro-probe through 
the material, induces network inhomogeneities in and around the strain path, and the resultant 
flow field complicates the measured response of the system. Through a robust set of custom-
designed OTM protocols, coupled with modeling and analytical calculations, we characterize the 
time-varying inhomogeneity fields induced by OTM measurements. We show that post-strain 
homogenization does not interfere with the intrinsic stress relaxation dynamics of the system, 
rather it manifests as an independent component in the stress decay, even in highly nonlinear 
regimes such as with the microrheological-LAOS (mLAOS) protocols we introduce. Our specific 
results show that Rouse-like elastic retraction, rather than disentanglement and disengagement, 
dominates the nonlinear stress relaxation of entangled polymers at micro- and meso- scales. Thus, 
our study opens up possibilities of performing precision nonlinear microrheological 
measurements, such as mLAOS, on a wide range of complex macromolecular systems. 
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Complex fluids and soft materials, such as networks of entangled polymers, have been 

widely studied over the past several decades due to the intriguing physics they exhibit – 

especially in response to stress or strain. Entangled polymers have been of particular recent 

interest as the Nobel Prize winning theory to describe their dynamics, de Gennes’ reptation 

model, falls short of accurately describing their stress response in the nonlinear regime or when 

subject to non-uniform flow fields. Entangled polymer systems are also ideal candidates for 

designing multifunctional materials, as they display intriguing scale-dependent viscoelastic 

properties that can be precisely tuned by the concentrations, sizes and topologies of the 

constituent polymers [1-6].  

Microrheology, which can probe viscoelasticity over lengthscales from the network mesh 

size to larger than the size of the constituent polymers, offers a valuable approach to study these 

complex systems [7-10]. In particular, active microrheology methods, such as using optical 

tweezers to drive a microsphere through a material with user-controlled rates and distances [11-

18], provides access to the microscopic origin of nonlinear properties [12-15,17,18] and strain-

induced rearrangements of network microstructures [16-18]. However, the flow field produced in 

these experiments is much more complex than analogous bulk rheology measurements and can 

lead to transient local inhomogeneities [9,12,19-21], which complicate accurate evaluation of 

rheological properties. The potential for inhomogeneities can become prohibitively large in 

nonlinear regimes where the physics is the most intriguing and least understood [1,5,17,20,22-

24]. These issues further pose a major obstacle to implementing a microrheological analog of 

large-amplitude-oscillatory-shear (LAOS) measurements that have been proven extremely 

effective in elucidating the nonlinear response of polymer systems [25-30].   

Thus, while optical tweezers microrheology (OTM) offers a promising route for probing 

rheological properties of entangled polymers and other soft materials, there has yet to be an 

accurate theoretical description of the resulting local inhomogeneities, much less a 
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straightforward protocol for incorporating the details of the time-dependent flow field into 

analysis of rheological parameters. Previous theoretical studies have been limited to near-linear 

regime perturbations; and did not describe post-strain homogenization dynamics nor decouple 

this effect from the intrinsic relaxation of the system [12,19].  

Here, we present a novel OTM protocol, supported by a theoretical framework, to 

elucidate the effect of strain-induced local inhomogeneities in polymeric materials. We use 

entangled DNA as a model system [31,32] and perform microrheological-LAOS (mLAOS) and 

single-strain OTM measurements. We measure the temporal variation of the inhomogeneity field 

and couple it to the time-varying osmotic pressure experienced by the microbead, such that we 

decompose the contributions of homogenization dynamics and intrinsic stress-relaxation to the 

experimentally measured stress response. Using a simple Fickian model we estimate the polymer 

concentration equilibration dynamics, and in turn, its manifestation in stress decay. We not only 

provide a complete description of the strain-induced inhomogeneity and its effect on the 

measured stress response, but we also introduce a valuable OTM technique – mLAOS. Our 

results answer key questions regarding how entangled polymers distribute local stress and relax 

following nonlinear strain, and open the door for straightforward analysis of a wide range of 

OTM measurements to investigate the nonlinear response of soft matter systems.  

For both single-strain and mLAOS measurements (Fig 1, Supplemental Materials (SM)), 

we optically drag a micro-probe of radius a = 2.25 μm through a 1 mg/ml solution of 38 μm 

linear DNA at a constant strain rate 3 √2⁄  85 s-1 (see SM) [17, 32]. We simultaneously 

measure the resulting stress response of the system  /  [17] via the force 

experienced by the probe,  ∆ , where Δx(t) is the displacement of the bead from the 

trap center, and k is the trap constant. For single-strain experiments, we drag the probe through 

six different strain path lengths LSP corresponding to maximum strains ( max 3 SP √2⁄ ) of 9.4 

to 37.7 [19], after which we halt bead motion (SM, Figs. 1, 2). For mLAOS experiments, we 
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oscillate the probe through the same strain path for 10 cycles. We vary the oscillation amplitude 

LSP and wait time before retracing the path Δtw to achieve oscillation periods Δt of 0.44 s, 0.89 s 

and 1.49 s (SM, Figs. 1, 3). As demonstrated in Fig. S1, the chosen strain parameters are 

sufficient to induce nonlinear response. 

The probe is much larger than the tube diameter (dT≈680 nm) and mesh size (ξ≈140 nm) 

of the system [31-34]; and  is well above the intrinsic relaxation rates τR
-1 and τD

-1, where τR ≈ 

0.6 s is the Rouse time associated with elastic retraction of polymer coils and τD≈40 s is the 

disengagement time over which an entangled polymer reptates out of its confining entanglement 

tube (see SM) [32,35]. Thus, as the probe moves through the network, it drags DNA along with it, 

creating a local density inhomogeneity. The inhomogeneity field can be described by a ‘build-up’ 

region with higher density of entanglement segments in front of the probe, and a lower density 

‘depletion’ zone in the strain path (Fig. 1a). Upon cessation of the stage motion, the Stokes’ drag 

force d 6  (primarily responsible for the displacement ∆  of the probe) vanishes, and 

the probe returns to the trap center by moving through the build-up region as the system 

equilibrates (Fig. 1b). This equilibration process is governed by the relaxation dynamics of the 

polymers in the build-up region, and manifested in the decay of Δx(t), or σ(t)= Δ ⁄  

(Fig. 2a).  

As shown in Figs. 2 and S2, σ(t) curves for all γmax values fit well to a double-exponential 

decay function,  / / , demonstrating that two distinct processes 

contribute to the stress relaxation. While the shorter relaxation time, τ1, increases linearly with 

γmax, τ2 is independent of γmax (Fig. 2b inset), with an average value of ~0.6 s that corresponds 

remarkably well to the predicted Rouse time τR (SM) [32,35]. The agreement of τ2 with τR, along 

with its independence from γmax, indicates that this contribution to the relaxation arises from 

intrinsic relaxation mechanisms available to the polymers. Conversely, the linear increase of τ1 
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with γmax suggests that this process is driven by equilibration of the local inhomogeneity, which 

should depend on the strain. 

To estimate the stress decay due to equilibration of the local inhomogeneity, we develop 

analytical calculations based on a toy model that describes the relaxation of the system following 

strain (Fig. 2c). All model assumptions and approximations are described and validated in SM. 

We treat the shape of the build-up region as roughly cylindrical with length L and radius R. L 

obtains an optimal value (dependent on ) and remains unchanged for increasing γ, while the 

build-up region grows cross-sectionally (increasing R) as new polymers are pushed into the 

region from the strain path. Therefore, the continuity equation SP  bu   bu  describes the polymer concentration in the build-up region, bu , immediately 

following the strain (t = 0) in terms of the bulk concentration, . Polymers in the build-up region 

diffuse over time such that the average concentration bu  decays from bu bu to bu  as  ∞. Diffusion occurs mostly along the radial direction of the cylindrical build-up region and 

can be described by Fick’s law   , where  is the collective diffusion 

coefficient of DNA in the bulk. While the density gradient is continuous in the build-up region, 

for simplicity we consider only the average value, , that changes to the bulk concentration  

across the boundary of the build-up region over a lengthscale of order R. Thus, the rate of 

concentration decay in the build-up region follows the differential equation  
 . The solution of this equation, along with the boundary conditions, gives 

 ~ bu . Thus, the average polymer concentration in the build-up region 

decays exponentially with a characteristic timescale  . For constant  perturbations,  

goes as SP  and hence  varies proportionally with SP  (and thus γmax). What remains to be 

determined is how the time-varying concentration  relates to the measured stress σ(t). 
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At a finite time, t, due to the mismatch of concentrations across the probe, it experiences 

an osmotic pressure force OS  that is proportional to , as the concentration in the 

depletion region is negligible. Hence, the force equation for the probe can be written as Δ6 ∆ ⁄ os e 0 , where e  is the elastic recovery force exerted by the 

strained DNA. Assuming that the drag coefficient (6 ) does not change significantly with time 

as the build-up region relaxes, the solution of the above first-order differential equation can be 

given by ∆  ⁄ os e ⁄ . As shown in the previous 

paragraph, the homogenization dynamics leads to exponential decay of , and in turn os , 

with relaxation time  that increases linearly with SP (recall  ~ bu /  and 

R2 ~ LSP). The force e  also decays exponentially with a characteristic time intrinsic to the 

system. The only intrinsic relaxation time manifested through our suite of measurements is the 

Rouse time, τR (see SM, Fig. S3). Hence the decay in e  should follow the same timescale τR. 

Since the time-dependence of both force terms in the above equation are exponential, the 

integration can be done easily to get ∆  /  / R , where A and B are constants. 

Thus, ∆  and, consequently, σ(t) follow double-exponential decay with characteristic 

timescales of  (similar to τ2), and R 1  as is manifested in our experiments. 

Our theoretical estimations demonstrate that the time-varying concentration 

inhomogeneity manifests in experimental measurements as a separate exponential decay with 

timescale  , and does not interfere with the intrinsic stress response of the system. A longer 

SP induces more inhomogeneity, i.e. denser build-up region, which takes longer to homogenize, 

resulting in slower decay of the osmotic pressure force.  

While the build-up region dictates the stress response in single-strain experiments, the 

inhomogeneity field in the strain path, i.e the depletion region, becomes crucial for mLAOS 

measurements. We focus our mLAOS analysis on the maximum value of stress reached in each 

cycle, max , seen as peaks in the repeated stress profiles (Fig. 3a). For all Δt values max 
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decreases in successive cycles and the decay of max  fits well to a double-exponential 

function, max  / / , where τ3 and τ4 are the two characteristic decay times, 

t = 0 denotes the moment of occurrence of the first stress peak, and Δ  (where n is the cycle 

number starting with n = 0 for the first strain path) (Fig. 3b). The shorter relaxation time, τ3, is 

independent of Δt, with an average value of ~0.6 s (≈τR), while τ4 increases linearly with Δt (Fig. 

3b inset).  

The forces acting on the probe in these mLAOS measurements are described by the same 

force balance equation Δ  6 ∆ ⁄ os e 0, so the stress variation can 

again be described by  ⁄ os e ⁄ . Similar to the 

single-strain case, the second term decays exponentially with a characteristic timescale similar to 

τR, due to the elastic relaxation of the strained DNA (SM, Fig. S3). Conversely, the osmotic force 

decays linearly with the decreasing concentration gradient of DNA across the probe in subsequent 

cycles.  

We use a toy model depicted in Fig. 3c (further described and validated in SM) to derive 

an analytical expression for this temporal decay of inhomogeneity. In the course of each cycle the 

probe sweeps away DNA from the strain path, leaving it initially fully depleted. In a time interval 

Δt, before the probe passes through that location again, DNA molecules from the neighboring 

region of lateral dimension √ ∆  diffuse into the strain path but get swept away in the next strain 

cycle. Hence, the DNA concentration in the neighboring region, , decreases with time. At a 

finite time t, the inward diffusive flux from the bulk to the neighboring region can be given by 

in    2  √ ∆ . Similarly, the outward flux from the neighboring region to the 

depletion region is out  2  n sp√ ∆ , where we have taken a time-averaged value of the 

periodically varying concentration at the strain-path, sp, since n  decreases over a timescale 

several times longer than ∆ . Therefore, the net change in n  is given by the continuity 
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equation n √ ∆ 2 √ ∆  in  2  out  ∆ √ ∆   sp 2 √ ∆  n . The solution of this first-order differential equation describes the time 

dependence of n , with an exponentially decaying leading term that satisfies the boundary 

condition 0   and a decay time  that is proportional to ∆ .  

Using this framework, we can describe the time-dependent inhomogeneity in the strain-

path, sp , by a similar differential equation, sp sp n , with boundary condition 

sp 0  0 where t=0 denotes when the probe has just passed (beginning of cycle). Solving 

this equation gives sp n 1 ⁄ , which attains a maximum value n 1 ∆ ⁄  

at the end of each cycle ∆ , and gives rise to the osmotic force os . Hence, os , and in 

turn, the first term in  follows the same exponential decay in t as that of n , with a decay 

time ∆ .  

Our calculations validate the experimental observation that the strain-induced time-

varying inhomogeneity in the strain-path causes an additional exponential decay in the peak stress 

measured at each cycle in an mLAOS experiment with a decay time proportional to the 

oscillation period, as   ∆ . While the dynamics of the inhomogeneity field are faster at 

higher oscillation frequencies, the amplitude of the oscillation determines the degree of 

inhomogeneity. The larger the amplitude (LSP), the more DNA the probe drags from the strain 

path (directly) and neighboring region (indirectly) to the build-up zone in each cycle, creating a 

stronger inhomogeneity field. Our analysis thus demonstrates how to effectively separate out the 

complex dynamics of the inhomogeneity field induced by OTM measurements from the intrinsic 

stress response of macromolecular systems.  

Here, we couple a robust set of optical tweezers measurements with modeling and 

analytical calculations to demonstrate the formation of time-varying inhomogeneity fields created 

by OTM experiments, and elucidate their effect on the microrheological response of polymeric 

materials. Our specific results for entangled DNA show that nonlinear stress relaxation of 
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entangled polymers at micro- and meso- scales is governed by Rouse-like elastic retraction, 

occurring over the classically predicted Rouse time τR, rather than the slower and oft-assumed 

dominant mechanism of entanglement tube disengagement (occurring over τD). More generally, 

we show that the generation of local concentration inhomogeneities in macromolecular systems is 

inevitable in the nonlinear regime – when strain rates are much faster than the system relaxation 

rate or the strain amplitude is much larger than the system correlation length – such as with the 

presented mLAOS protocols. However, we illustrate that post-strain homogenization does not 

interfere with the intrinsic stress relaxation dynamics of the system, rather it manifests as an 

independent component in the stress decay. This additional component is identified by a distinct 

decay time that varies linearly with the oscillation period (mLAOS) or maximum strain value 

(single-strain). Thus, our study opens up possibilities of performing nonlinear OTM 

measurements, such as mLAOS, on a wide range of complex macromolecular systems to probe 

their intriguing nonlinear and scale-dependent rheological properties.  
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Fig 1. Schematic of OTM strain profiles (a) and resultant micro-strained state of entangled DNA (b). (a) 

Strain profiles represent the path of the trapped bead relative to the sample. In single-strain experiments 

(orange), the bead is dragged a distance LSP at a constant rate , after which motion is halted. In mLAOS 

experiments (brown) a constant-rate oscillatory strain with period Δt and wait-time Δtw is applied by 

repeatedly tracing the same strain path along forward and backward directions. (b) As the probe moves 

through the solution, DNA in the strain path accumulates, creating a higher density ‘build-up’ region in 

front of the bead, and lower density ‘depletion’ region behind it. At the same time, Stokes’ drag displaces 

the bead from the trap center by a distance Δx.        
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Fig 2. Stress relaxation of entangled DNA is mediated by Rouse-like elastic retraction coupled with 

homogenization of non-uniform concentration profiles. (a) Sample applied strain γ(t) (orange line, right 

axis) and measured stress response σ(t) (brown line, left axis) versus time t. The stress relaxation at 

constant strain γmax is fit to a double-exponential decay (grey line). Data shown is for γmax = 37.7. Inset: 

Bead motion through the build-up region towards the trap center as the system relaxes. (b) σ(t) curves for 

γmax values of 9.4 (pink), 18.9 (orange), 23.6 (olive), 28.3 (magenta), 33.0 (cyan), and 37.7 (green), all fit to 

double-exponential decays with decay times τ1 and τ2 (black lines). Inset: τ1 and τ2 (color-coded circles and 

squares with error bars), versus γmax with linear fits to the data. (c) Schematic of the model and associated 

variables: micro-probe radius ( , radius (R) and length (L) of ‘build-up’ region, probe displacement from 

trap center (∆ ), and DNA concentrations in the build-up region  and in bulk ( . 
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Fig 3. The maximum stress induced in entangled DNA during mLAOS measurements exhibits two-phase 

exponential decay. (a) Sample applied strain γ(t) (orange, right axis) and measured stress σ(t) (brown, left 

axis) during an mLAOS measurement with period Δt. Black circles denote the maximum stress measured 

for each oscillation σmax(t). (b) σmax(t) values (hollow squares) for ten oscillations with Δt values of 0.44 s 

(blue), 0.89 s (green) and 1.49 s (olive), all fit to double-exponential decays (solid lines) with decay times 

τ3 and τ4. Inset: τ3 and τ4 (color-coded squares and circles with error bars) versus Δt with linear fits to the 

data. (c) Schematic of the model with the associated variables: probe radius (a), probe speed (v), 

displacement of probe from the trap center (∆ ), width of the neighboring region (√ ∆ ) that comprises 

DNA that diffuses into the strain path in wait time ∆ , DNA concentrations in the strain path ( sp , 

neighboring region ( n), and bulk ( ).  

 


