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The paired top and bottom Dirac surface states, each associated with a half-integer 

quantum Hall (QH) effect, and a resultant integer QH conductance (νe2/h), are hallmarks 

of a three-dimensional (3D) topological insulator (TI). In a dual-gated system, chemical 

potentials of the paired surface states are controlled through separate gates. In this work, 

we establish tunable capacitive coupling between the surface states of a bulk-insulating TI 

BiSbTeSe2 and study the effect of this coupling on QH plateaus and Landau level (LL) fan 

diagram via dual-gate control. We observe non-linear QH transitions at low charge density 

in strongly-coupled surface states, which are related to the charge-density-dependent 

coupling strength. A splitting of the N= 0 LL at the charge neutrality point for thin devices 

(but thicker than the 2D limit) indicates inter-surface hybridization possibly beyond single-

particle effects. By applying capacitor charging models to the surface states, we explore 

their chemical potential as a function of charge density and extract the fundamental 

electronic quantity of LL energy gaps from dual-gated transport and capacitance 

measurements. These studies are essential for the realization of exotic quantum effects such 

as topological exciton condensation. 
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The unique topologically-protected metallic surface states in three-dimensional topological 

insulators (3D TIs) have been extensively probed experimentally to realize exotic quantum 

phenomena [1-3]. Time-reversal symmetry guarantees the pairing of top and bottom Dirac 

surface states in 3D TIs [4,5]. An external perpendicular magnetic field applied can 

simultaneously break the time-reversal symmetry and manifest in the quantum Hall effect (QHE) 

in 3D TIs. The half-integer QHE with Landau level (LL) filling factors vt,b=(Nt,b+1/2) for top, 

bottom surfaces is a signature of the Dirac surface states [6-10]. 

Fine control of chemical potentials of the top and bottom surface states has been central to 

research in 3D TIs [6-14]. Dual electrostatic gating is an effective method as it provides an 

additional degree of tuning on both surfaces than a single-gate configuration [15-19]. 

Independent gate control of the decoupled top and bottom surface states in the quantum Hall 

regimes has been reported [15,16]. However, the study of the QHE in capacitively-coupled 

surface states, which serves as the starting point for intriguing quantum states such as topological 

exciton condensates [20,21], is still lacking. Several groups have demonstrated dual-gate control 

of the bulk insulating Bi2-xSbxTe3-ySey-based 3D TI in weak and moderate surface-state coupling 

[17-19]; however, the quality of those devices prevented the observation of QH states.  

Here we investigate the effect of capacitive coupling of paired TI surface states on QH 

plateau development. The thickness-dependent coupling between the top and bottom surfaces is 

studied by using a dual-gating configuration via a van der Waals (vdW) platform [22]. We study 

BSTS flake thicknesses down to 10 nm, over a range of inter-surface coupling. We also explore 

LL formation at different charge propagation regimes of the surface states with capacitive 

coupling and study their LL energy gaps. 



 3

Variable thickness BSTS devices from 89 nm to 10 nm were fabricated (Fig. S1 [23]) for 

this study. The complete device structure consists of vdW five-layer heterostructures of graphite 

(Gr)/hexagonal boron nitride (hBN) encapsulated BSTS as inserted in Fig. 1(e). The top and 

bottom Gr and hBN layers serve as the gate-electrode and dielectric, respectively. This vdW 

heterostructure is effective in controlling the charge density of the TI surface states [22]. Fig. 

S1(a)-(d) are the device images, and the device specifications are summarized in Table S1 [23]. 

Color maps of dual-gated longitudinal resistance (Rxx) of the respective BSTS devices are 

shown in Fig. 1(a)-(d). By tuning the top-gate voltage (Vtg) and bottom-gate voltage (Vbg), the 

top and bottom surface states are tuned separately to the two independent ambipolar transport. 

The red and black dashed lines in the 2D color maps illustrate the Dirac points of the top and 

bottom surface states, respectively. The two Dirac points intersect and form an Rxx maximum at 

intersection, the overall charge neutrality point (CNP). These two lines divide the Rxx map into 

four quadrants, corresponding to hole-hole (h-h), electron-electron (e-e), hole-electron (h-e), and 

electron-hole (e-h) conduction of the (top-bottom) surface as labeled in Fig. 1(a). 

For 89 nm BSTS (Fig 1(a)), the Rxx map shows four nearly-equal-sized conduction 

quadrants versus the dual-gate voltages. The top and bottom surface states are tuned 

independently by the top- and bottom-gate, implying negligible capacitive coupling due to the 

relatively large spatial separation in the bulk. As the thickness of BSTS reduces, the top and 

bottom Dirac points tend toward the diagonal direction as shown in Fig. 1(b)-(d). The diagonal 

feature of the Rxx maximum is a result of the strong capacitive coupling between the top and 

bottom surfaces, as observed in similar compounds [18,19].  

Another feature arising from the coupling is the overlapping of both surface Dirac points in 

transport as a function of any one gate voltage. Rxx as a function of Vbg for 89 nm BSTS taken at 
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three different Vtg across the top Dirac point (Fig. 1(e)) show the peak position of Rxx (bottom 

Dirac point) is nearly independent of the density of the top surface. Whereas for 31 nm BSTS, 

the Rxx line profiles (Fig. 1(f)) show a downshift in the bottom Dirac point with increase in Vtg. 

In addition, the Rxx shows a broadening at both high-density hole and electron conductions, 

corresponding to the top surface Dirac point as indicated by the arrows in Fig. 1(f). This feature 

is more apparent in 16 nm BSTS, where the bottom and top Dirac points shift oppositely toward 

each other, resulting in the broad double Rxx peaks in Vbg (Fig. 1(g)). The double Dirac points 

eventually overlap to form a single Rxx peak with higher resistance value as shown in 10 nm 

BSTS (Fig. 1(h)).  

Dual-gated magneto-transport at perpendicular magnetic field of 18 T for different thickness 

BSTS are studied in Fig. 2. The well-developed QH plateaus at high magnetic field give rise to 

clear QH boundaries in 2D maps of σxx and σxy versus dual-gate voltages. The dashed lines in the 

maps are tracelines at the boundaries of QH steps in the parameter space of two gate voltages. 

For 89 nm BSTS (Fig. 2(a) and (b)), the QH boundaries traced with vertical and horizontal 

straight lines implies that the LLs formed at the top and bottom surface states are completely 

independent of each other. The line profiles (Fig. 2(c)) reveal equally-spaced QH plateaus in σxy 

as tuned by Vbg into integer increments of e2/h, along with minimum σxx in the QH regimes. The 

coupling effect between surface states results in the development of a narrower ν= 0 plateau near 

the overall CNP due to the squeezing of counter-propagating regions (in the 2D map) in thinner 

BSTS (Fig. 2(d)-(e)). The (νt, νb) indexed in 31 nm (Fig. 2(f)) reveal a sign change in νt due to 

the crossing of Nt= 0 level, as compared with the constant νt in 89 nm BSTS. The strongly-

coupled surface states (≤16 nm) reveal a further squeezing in ν= 0 LL due to the diagonal 

tendency of both Nt and Nb= 0 lines (Fig. 2(g)-(l)). The LL fan diagram for any surface 
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transforms from asymmetric into highly symmetric between the hole and electron LLs with ν= 0 

plateau residing at the Dirac point of the surface as shown in Fig. S2 [23]. 

Referring to the geometry modulation model of QH plateaus (Fig. S3 [23]), the quadrilateral 

plateaus developed near the overall CNP extend in the diagonal direction and modify into a 

rhombus shape as the coupling effect becomes appreciable. In the low charge density region, we 

observe a splitting in both Nt and Nb= 0 LLs at the overall CNP as the thickness of BSTS reduces 

to 16 nm (Fig. 2(g)). The line profile of σxx reveals a dip with zeroth-plateau formed in σxy as 

presented in Fig. 2(i). Similar feature is observed in 10 nm BSTS (Fig. 2(l)) with more 

pronounced 0 LL peak splitting. The displacement field (D) versus total charge density (n) maps 

of σxx and σxy (Fig. S4 [23]) are plotted to extract the total charge density of the 0 LL splitting 

(∆n) for the thin BSTS. The b tn n n= +  is calculated as ( )b bg bg Dn C V V= − and ( )t tg tg Dn C V V= −  

[27]. The ∆n as a function of BSTS thickness (d) is inserted in Fig. 3(a).  

A direct interpretation of the 0 LL splitting is a consequence of the hybridization between 

top and bottom surface states [28-31]. As the thickness reduces to the thin limit of 3D TI, the 

inter-surface tunneling due to proximity of the surface states leads to an energy gap at CNP [32]. 

A key signature of such inter-surface hybridization is the degeneracy lifting of the N= 0 levels in 

Landau quantization [28-30], which is consistent with our observation. The asymmetry in hole 

and electron N= 0 sublevels (Fig. 2(l)) in 10 nm BSTS could be explained by the presence of the 

Zeeman effect [28,29].  

However, the inter-surface hybridization in our 16 nm and 10 nm BSTS seems to contradict 

the well-known 2D limit of 5 nm for Bi2Se3 [33]. One possibility is the limitation of angle-

resolved photoemission spectroscopy in resolving sub-meV energy scale. This is evidenced by 

the sub-meV hybridization gap signatures in 12-17 nm Bi2Se3 from phase coherent transport 
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[27]. To check this, we examined the weak anti-localization (WAL) effect by measuring 

magneto-conductivity (∆σxx) for the capacitively-coupled BSTS devices at low magnetic field, as 

shown in Fig. S5 [23]. We observed a consistent transition in WAL [27], indicating a first 

crossover of 2D limit in 16 nm BSTS, and suppression of WAL by stronger hybridization for 

even thinner BSTS (8 nm) [34,35]. A sub-meV gap size can easily be obscured by disorder, 

therefore not visible in our zero magnetic field transport (Fig. 1). The fact that the gap feature 

shows up in the form of N= 0 LL splitting at strong magnetic field indicates a mechanism of 

field-dependent hybridization gap as discussed in [31]. Higher magnetic fields will be required 

for us to check the magnetic-field-proportionality of the gap size. Nonetheless, we cannot 

exclude the possibility of a many-particle gap developed by the topological exciton condensate 

as it is also predicted in the same regime [20]. 

In high-density region, the Nt and Nb= 0 tracelines intercross at different angles, resulting in 

the non-linear QH boundaries as shown in Fig. 2(d) and (e). We assign the non-linearity to the 

charge density dependent capacitive-coupling between the top and bottom surface states, where 

screening in the bulk of the sample is weaker at low charge density. This leads to a pronounced 

bending of Nt= 0 and Nb= 0 tracelines near the overall CNP as observed in thinner BSTS (16 nm 

and 10 nm in Fig. 2(g, h) and (j, k)).  

The above non-linear QH boundaries features in dual-gated transport are further analyzed to 

study the capacitive-coupling effect in thin 3D TIs. Fig. 3(a) presents the difference between top 

surface Dirac point and overall CNP voltages (VtD-VD) as a function of nb extracted from Rxx 

maps for various thickness BSTS at 18 T. The 89 nm and 47 nm BSTS show a nearly linear 

relation of VtD-VD with nb. In contrast, the non-linear feature manifests in all other (thinner) 

BSTS. Schematics of linear band of the top surface in Fig. 3(a) illustrates the top surface charge 
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density tuned from the overall CNP by Vbg. The change in value of VtD is solely controlled by 

Vbg as the chemical potential of the top surface is fixed at its Dirac point. The charge density 

corresponding to the change of top surface Dirac point from the overall CNP (ntD) and then be 

calculated as ( )tD tg tD Dn C V V= − .  

The ntD as a function of d with nb fixed at 1×1012 cm-2 is plotted in Fig. 3(b). The thickness 

dependence of ntD is studied at high density of nb to circumvent the non-linear bending effect 

near the overall CNP. ntD increases monotonically with the reduction in d, which indicates a 

constant increasing of the electric field penetrating through the bottom surface and the interior 

bulk layer as the thickness is reduced. The linear extrapolation (black dashed line) of the data 

points intercepts with the y- and x-axes at 1×1012 cm-2 and ~60 nm, respectively. The y-intercept 

at ntD= nb means the bottom gate tunes an equal amount of density in top and bottom surface 

states, which is the zero-thickness limit (ignoring the hybridization). The x-intercept suggests the 

thickness of the BSTS where the surface states are decoupled capacitively, consistent with 

observations from literature [36,37].  

Considering the top and bottom surface states of a thin 3D TI to be a parallel-plate capacitor 

with an interior bulk insulating layer, together with the top and bottom-gate layers forming a 

series of three parallel-capacitors, we implement the capacitor charging equations for dual-gated 

surface states as formulated in [17,18]: b b t
b bg bg BSTSe n C V C

e e e
μ μ μΔ Δ Δ⎛ ⎞ ⎛ ⎞Δ = Δ − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 � (1), and 

t t b
t tg tg BSTSe n C V C

e e e
μ μ μΔ Δ Δ⎛ ⎞ ⎛ ⎞Δ = Δ − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 � (2), where Cbg, Ctg and CBSTS are the top-gate, 

bottom-gate and BSTS bulk capacitances, and ∆μb(t) is the change in chemical potential of the 

bottom (top) surface state. These two equations are simplified to two linear relations under the 

condition where the top surface state stays at its Dirac point, meaning ∆nt and ∆μt have both 
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vanished. The outcome of Eq. (1) is the linear dependence of ∆Vtg versus ∆Vbg, and the slope (S) 

can be expressed as 1 bg BSTS

tg bg BSTS

C C
S

C C C
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
. The slopes of ∆Vtg versus ∆Vbg in zero magnetic 

field 2D maps of Rxx for different BSTS thickness as shown in the red lines in Fig. 1(b)-(d) are 

used to estimate the BSTS bulk capacitances. This is to ensure that the slope is not affected by 

localized states formed in magnetic field. Details of the fitted S, Cbg, Ctg and CBSTS are listed in 

Table S2 [23]. An average dielectric constant of BSTS (εBSTS) of about 28 is obtained from 

different thickness BSTS as shown in Fig. 3(b), which is comparable to similar compounds 

[17,38]. 

Chemical potential of the bottom surface state (μb) can be evaluated from ∆Vtg by using the 

relation derived from Eq. (2) tg
b tg

BSTS

C
e V

C
μ = − Δ , where the ∆Vtg is the difference between VtD 

and the overall CNP position (VD). Fig. 3(c) shows the plots of μb as a function of nb for the 16 

nm BSTS at magnetic field of 0T and 18T. The increase in μb in magnetic field is related to the 

localized electronic states in the bottom surface due to LL formation. The color-shaded regions 

emphasize density regions in terms of LL indices of bottom surface (Nb) between ‐2 and +2. The 

change in bottom surface chemical potential with field, ∆μb= μb(18T)-μb(0T) is inserted in Fig. 

3(c). The LL gaps (∆±1) are estimated from the ∆μb in the charge density region for Nb= ±1. Fig. 

3(d) displays the ∆±1 as a function of magnetic field for the 16 nm BSTS. The details of the 

estimated of the ∆±1 at different magnetic fields are given in Fig. S6 [23]. The black dashed curve 

in Fig. 3(d) serves as a comparison between ∆±1 and the Dirac LL energy relation 

sgn( ) 2N FN v e N BΔ = h  [39], with the Fermi velocity (vF) of the BSTS taken to be ~3×105 
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m/s [6]. Inset in Fig. 3(d) shows nearly linear fitting of ∆±1 with the square root of magnetic field, 

indicating a good match with the theory despite a ~30% deviation from theoretical values.  

Despite the agreement of the ∆±1 obtained from dual-gated transport with the theoretical 

calculation, the effect of magnetic field on the capacitance of BSTS cannot be ruled out from the 

study. As the μb function is inversely proportional to CBSTS, the reduction in CBSTS can also cause 

an increment in μb. To verify this, we perform dual-gated capacitance measurement on the same 

device by using a capacitance bridge method [40,41]. A similar diagonal zero-field dual-gated 

CQ map (Fig. S7(a) [23]) again verifies the coupling effect of top and bottom surface states. In a 

magnetic field of 9T (Fig. S7(b) [23]), the CQ forms dips in the QH regimes corresponding to 

electronic density of states dips developed in those regimes. Fig. S7(c) compares the line profiles 

of CQ as a function of Vtg at 0T and 9T at fixed Vbg. The capacitance values are nearly constant 

with magnetic field, which indicates an insignificant effect of magnetic field on BSTS bulk 

capacitance, in agreement with the analysis in [17]. In addition, the LL gap of ∆±1 calculated 

from CQ at 9T is about 19 meV, which is close to the value obtained from the dual-gated 

transport. 

In summary, the direct correlation between flake thickness and capacitive coupling gives 

rise to a tunable coupling of topological surface states. A direct manifestation of the capacitive 

coupling between surface states is the diagonal feature in dual-gated conduction. In 

perpendicular magnetic field, the strongly-coupled surface states develop into a series of 

rhombus-shaped QH plateaus versus dual-gates, and the LL fan diagram transforms into an 

electron-hole symmetric LL series about the N= 0 LL. A careful analysis reveals non-linear QH 

boundaries and splitting of N= 0 LL at the overall CNP. We attribute the splitting to a 

consequence of inter-surface hybridization at high magnetic field. From analysis of non-linear 
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QH boundaries (in this case, Nt= 0 LL with Vbg), we estimated a physical quantity: dielectric 

constant of BSTS, and an electronic quantity: LL energy separation. The study of surface state 

coupling effects in QH regimes is believed to pave the path for exotic quantum phenomena such 

as topological exciton condensation. 
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FIG. 1. 2D color maps of Rxx as functions of Vtg and Vbg for BSTS devices with flake thickness 

of (a) 89 nm, (b) 31 nm, (c) 16 nm, and (d) 10 nm. (e)-(h) Plots of Rxx versus Vbg extracted from 

the corresponding maps in (a)-(d) at different Vtg indicated by the arrows. Inset in (e) is a 

schematic of cross-sectional illustration of the device.  
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FIG. 2. 2D color maps of σxx and σxy as a function of dual-gated voltages for the (a, b) 89 nm, (d, 

e) 31 nm, (g, h) 16 nm, and (j, k) 10 nm BSTS devices measured at 18 T. The LL indices for top 

and bottom surfaces, Nt and Nb are labeled in y-axis and x-axis, respectively. Line profiles of σxx 

and σxy as a function of Vbg extracted from the corresponding maps near the overall CNP (as 

indicated by the arrows) for the (c) 89 nm, (f) 31 nm, (i) 16 nm, and (l) 10 nm BSTS devices. 

The vertical black dashed line and grey highlight in (c), (f), (i), and (l) denote the overall CNP 

and ν= 0 QH plateau, respectively. The LL filling factors for top and bottom surfaces (νt, νb) and 

total, ν= νt+νb are indexed in the figure. 
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FIG. 3. (a) Plot of VtD-VD as a function of nb for different thickness BSTS at 18 T. Inset in (a) 

plots the splitting of Nt and Nb at overall CNP in total charge density (∆n) as a function of flake 

thickness d. (b) Plot of ntD (as the nb is tuned from bottom Dirac point to 1×1012 cm-2) and εBSTS 

as a function of d. The black and blue dashed lines in (b) are the fittings of ntD and εBSTS, 

respectively, with d. Inset in (b) is a schematic of the top and bottom Dirac surface states. (c) 

Plot of μb versus nb for the 16 nm BSTS device at magnetic field of 0T and 18T. The color 

highlights in (c) display the LL indices of bottom surface Nb from ‐2 (leftmost) to +2 (rightmost) 

formed at 18 T. Inset in (c) is the ∆μb= μb(18T)-μb(0T) versus nb. (d) Plot of ∆μb for Nb= ±1 

versus magnetic field. Inset in (d) is the ∆±1 versus B1/2. 

 
 


