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We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer
graphene consists of a series of semi-metallic and topological phases. In particular we are able to
prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that
exist around all magic angles have nontrivial topology stabilized by a magnetic symmetry, provided
band gaps appearing at fillings of ±4 electrons per Moiré unit cell. The topological index is given
as the winding number (a Z number) of the Wilson loop in the Moiré BZ. Furthermore, we also
claim that, when the gapped bands are allowed to couple with higher energy bands, the Z index
collapses to a stable Z2 index. The approximate, emergent particle-hole symmetry is essential to
the topology of graphene: when strongly broken, non-topological phases can appear. Our paper
underpins topology as the crucial ingredient to the description of low-energy graphene. We provide
a 4-band short range tight-binding model whose 2 lower bands have the same topology, symmetry,
and flatness as those of the twisted bilayer graphene, and which can be used as an effective low-energy
model. We then perform large-scale (11000 atoms per unit cell, 40 days per k-point computing time)
ab-initio calculations of a series of small angles, from 3◦ to 1◦, which show a more complex and
somewhat different evolution of the symmetry of the low-energy bands than that of the theoretical
Moiré model, but which confirms the topological nature of the system.

PACS numbers: 03.67.Mn, 05.30.Pr, 73.43.-f

Twisted bilayer graphene (TBG) is an engineered
material consisting of two layers of graphene, coupled via
van-der-Waals interaction and rotated relative to each
other by some twist angle θ. This material exhibits
rich single and many-body physics [1–4]. Recently,
it was suggested that for θe ∼ 1.1◦, charge gaps
appear at fillings of ±4 electrons per Moiré unit cell.
Importantly, another charge gap at −2 was also detected,
and conjectured to be a “Mott gap” [5, 6]. If true
that the “Mott” state appears, this represents the
first many-body phase in zero-field graphene. Upon
gating the sample, zero resistivity was observed at low
temperatures within a range of carrier density near the
Mott gap. The superconductivity in TBG is conjectured
to be unconventional [7–12]. TBG could be a new
platform for the study of strong correlation physics
[13–17]. The observed single-particle charge gaps at
fillings ±4 are consistent with the prediction of an earlier
theoretical model in Ref. [18], which we call the Moiré
band model (MBM). In MBM, the two valleys at K and
K ′ in the graphene Brillouin zone (BZ) decouple. In
each valley, the electronic bands of TBG are obtained by
coupling the two Dirac cones in the two layers offset in
momentum by the angle twist. The model predicts the
vanishing of the Fermi velocity at half-filling for certain
twist angles called the “magic angles”, labeled as θmi with

i integers. The predicted first (largest) magic angle is
θm1 ∼ 1.05◦, close to the experimental θe, and therefore
the experimental observation of the narrow bands and
“Mott physics” may be related to the vanishing Fermi
velocity.

In this paper, we show, by exhaustive analytical,
numerical and ab-initio methods, that nontrivial band
topology is prevalent in TBG near every magic angle,
given band gaps appearing at ±4. We prove that in
the MBM for each valley, as long as direct band gaps
exist between the middle two bands (not counting spin)
and the rest, the two bands possess nontrivial band
topology protected by the symmetry C2T , a composite
operation of twofold rotation and time-reversal [19–
21]. The nontrivial topology is diagnosed both from
irreducible representations (irreps) of magnetic groups
at high-symmetry momenta as well as from the winding
number of Wilson loops. The proof for arbitrary θ
exploits an approximate particle-hole (PH) symmetry in
the original MBM; without invoking this symmetry, or if
the symmetry is strongly broken, the zero energy bands
do not necessarily need to be topological. When the PH
symmetry is broken (softly, in the MBM), the statement
is proved for θm1 ≥ θ ≥ θm6 via explicit calculations. We
conjecture that the fragile Z topological index of the two
middle bands collapses to a stable Z2 index when more
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bands are considered.
The nontrivial band topology obstructs the building

of a two-band tight-binding model for one valley with
correct symmetries and finite range of hopping. In order
to capture the symmetry, dispersion and topology of
the Moiré bands, we—for the first time—write down a
four-band tight-binding (TB) model defined on the Moiré
superlattice with short range hopping. The TB model
offers an anchor point for the study of correlation physics
in TBG, when interactions are projected to its lower two
bands. We test the validity of MBM and of the symmetry
eigenvalues used to obtain our TB model by performing
large scale first principles calculations very close to θm1.
Each k point we computed takes about 30-40 days for
θ ∼ θm1. Different from the MBM, we find that the
gap at Moiré K point due to the inter-valley coupling
of graphene changes non-monotonically as θ decreases.
This (along with graphene buckling) could explain the
decrease in conductivity at half filling observed in
experiments. If this gap is ignored, the DFT bands have
the same topology with the MBM and TB model.

We now analyze the symmetries of the one-valley
MBM. (Please see Section 2 of [22] for a short review of
MBM.) Due to the vanishing of the K to K ′ inter-valley
coupling, any symmetry that relates K to K ′ in the
original layer is hence not present in the one-valley model:
time reversal, C6z and C2y are absent, but C3z, C2x, and
C2zT remain, which generate the magnetic space group
(MSG) P6′2′2 (#177.151 in the BNS notation [23]).
Spin-orbit coupling is neglected in the MBM. For the
phase at θ & θm1 in MBM, where the two bands
near charge neutrality point are disconnected from other
bands (A-phase in Fig. 1(a)) the irreps of the two
bands are calculated to be Γ1 + Γ2, M1 + M2 and
K2 + K3 at Γ, M and K points, respectively. (See
Table I for the definitions of irreps [24]). Compared
to the irreps of elementary band representations [25–27]
(EBRs), which represent the atomic limits, listed in Table
1 of Ref. [22], we conclude that these two bands (dubbed
2B-1V for “two-band one-valley”) cannot be topologically
trivial: they cannot be decomposed into sum of a positive
number of atomic insulators. If we allow coefficients
to be negative, we obtain this decomposition: 2B-1V
= s@2c + pz@1a − s@1a. Here s@2c represents the
band formed by the s orbital at the honeycomb lattice,
pz(s)@1a represents the band formed by the pz(s) orbital
at the triangular lattice. The negative integer indicates
that 2B-1V at least host a “fragile” topology [25, 27, 28];
namely, one cannot construct exponentially localized
Wannier functions unless they are coupled to some other
atomic bands.

As the twist angle decreases away from θm1 in
the MBM, the band structure and the irreps at
high-symmetry momenta experience non-monotonous
changes, but “magic angles”—where the Fermi velocity
at half-filling vanishes—reappear periodically. In Fig. 1,

Γ1 Γ2 Γ3 M1 M2 K1 K2K3

E 1 1 2 E 1 1 E 1 2
2C3 1 1 -1 C′2 1 -1 C3 1 -1
3C′2 1 -1 0 C−1

3 1 -1

TABLE I. Character table of irreps at high symmetry
momenta in magnetic space group P6′2′2 (#177.151 in BNS
settings) [24]. The definitions of high symmetry momenta are
given in Table 1 of Ref. [22]. For the little group of Γ, E,
C3, and C′2 represent the conjugation classes generated from
identity, C3z, and C2x, respectively. The number before each
conjugate class represents the number of operations in this
class. Conjugate class symbols at M and K are defined in
similar ways.
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FIG. 1. (a) Fermi velocity at the charge neutrality point
of the MBM plotted as a function of the twist angle. The
dimensionless parameter α = w/(2vF |K| sin θ

2
) uniquely

determines the band structure of the MBM (up to a scaling);
w is the inter-layer coupling, vF is the Fermi velocity of single
layer graphene, |K| is the distance between Γ and K, and
θ is the twist angle. (See Ref. [18] or Section 2 of Ref.
[22] for more details.) In this plot we set w = 110meV,
vF |K| = 19.81eV. The gapped regions, Θa, where the two
bands near charge neutrality point are fully disconnected from
all other bands are shadowed with grey, and labeled as A, B,
C, D. The magic angles, where the Fermi velocity vanishes,
are marked by dashed lines. By numerical calculation we find
that αm1 ≈ 0.605 (θm1 ≈ 1.05◦), αm2 ≈ 1.28 (θm1 ≈ 0.497◦),
αm3 ≈ 1.83 (θm3 ≈ 0.348◦), αm4 ≈ 2.71 (θm4 ≈ 0.235◦),
αm5 ≈ 3.30 (θm5 ≈ 0.193◦), αm6 ≈ 3.82 (θm6 ≈ 0.167◦). (b)
The Wilson loops of the four gapped phases have the same
winding number, 1.

we show the evolution of the Fermi velocity as function
of twist angle θ. As a function of θ, the middle two
bands are not always separated by a (direct) gap at
all momenta: there are four gapped intervals, denoted
as Θa, where the middle two bands form a separate
group of bands, shaded by grey in Fig. 1. While θm3 ∈
Θa, θm1,m2,m4,m5,m6 /∈ Θa. Therefore, the topology is
ill-defined for the middle two bands in the MBM at higher
magic angles. However, for any θ ∈ Θa, as well as for
smaller angles, we show below that 2B-1V is topologically
nontrivial.

Besides the P6′2′2 symmetry, the MBM also has
an approximate PH symmetry. In the limit of zero
rotation of the Pauli matrices of the spin between the
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two graphene layers, this symmetry is exact—one of the
approximations used in Ref. [18]. As we discuss in
Section 2 of Ref. [22], this PH symmetry is unitary and
it anti-commutes with C2x. The symmetry is crucial
in proving a theorem for TBG. We numerically show
that our results, understood in light of the approximate
PH symmetry, hold for the general case [29]. First
we show that in the presence of the approximate PH
symmetry, for θ ∈ Θa 2B-1V has at least nontrivial fragile
topology. The explicit full proof is given in Sections 2
and 4 of Ref. [22]. The irreps at K and K′ of 2B-1V
are always the same as the irreps at K and K′ in single
layer graphene. For the irreps of 2B-1V at Γ and M,
one uses that the PH symmetry operator anti-commutes
with C2x but commutes with the other generators of
C2zT and C3. Due to these relations, the upper and
the lower irreps have opposite C2x eigenvalues and hence
form Γ1 + Γ2. Similarly, the irreps at M are forced
to be M1 + M2. The bands at any θ ∈ Θa have the
same irreps at all high-symmetry momenta as those for
θ & θm1 (A-phase in Fig. 1(a)). They then have the same
EBR decomposition as the A-phase and we know that the
2B-1V again has fragile topology. The fragile topology
can be proved from another perspective. In Section 4 of
Ref. [22], we prove a lemma relating the winding of the
Wilson loop eigenvalues of any 2B-1V model to the irreps
at high-symmetry momenta, similar to index theorems in
Ref. [30–32]. Applying the lemma to the irreps of 2B-1V
at any θ ∈ any gapped interval, we find the winding to
be ±1 mod 3, i.e., nontrivial.

The irreps cannot, by themselves, distinguish if the
winding is even or odd. For the first four gapped
phases, we calculate the Wilson loop of 2B-1V, and
find its winding to always be ±1. This suggests
something stronger: we conjecture that 2B-1V has in
fact a stable Z2 topological index protected by C2zT .
To see this, one realizes that the homotopy group of
gapped Hamiltonians in 2D is given by π2[O(Nocc +
Nunocc)/O(Nocc ⊕ Nunocc)] = Z2 for Nunocc,occ > 2 and
= Z for Nocc = 2 where the latter is nothing but the
winding number of Wilson loop eigenvalues. Adding
trivial bands to the lowest two bands maps one element
in Z to one Z2 following the simple rule z2 = z mod 2,
i.e., odd windings are stable to superposition of trivial
bands (see Section 4 of Ref. [22]). The collapse from
Z classification to Z2 classification when more bands are
considered has been discussed in Ref. [33], and the Z2

index is identified as the second Stiefel-Whitney class.
Having proved the topological nature of the one-valley

model. We note that the two-valley model is just two
copies of the one-valley model. As shown in Section 2 of
Ref. [22], the irreps of the 4 bands near charge neutrality
are the same as those of two atomic insulators. If we
break the valley quantum number by considering the
inter-valley coupling, a small gap is opened at the K
point, and the four bands are now Wannierizable.
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FIG. 2. The four-band tight-binding model for one valley.
The lower two bands have identical irreps and Wilson loop
winding of the gapped middle two bands in the one-valley
MBM. (a) The tight-binding model. The energy splitting
between s and pz is ∆. The hopping parameters ts,p, t′s,p, λ
are all in general complex numbers. (b) The band structure.
(c) The Wilson loop of the lower two bands. (b) and (c) are
calculated with the parameters ts = tp = t, t′s = t′p = − 1

3
t,

λ = 2√
27
t, and ∆ = 0.15t. As discussed in Section 5 of Ref.

[22], such parameters are chosen to flaten the band width.

We now build short-range hopping models with the
correct symmetries and topology, that should be used as
toy-models for the two topological graphene bands. Due
to the topological obstruction, a two-band short range
model with the correct symmetry that simulates 2B-1V
is excluded [14, 34]. However, we can successfully build
a tight-binding 4-band, 1 valley lattice model with short
range hopping parameters, which has 2 bands separated
by a band gap from another 2 bands: either of these two
bands is a model for the 2B-1V. We here give the strategy
for building this model, and leave the details in Section 5
of Ref. [22]. We showed that the irreps (Γ1+Γ2, M1+M2,
and K2K3) of the middle two bands in one-valley MBM,
can only be written as a difference of irreps of atomic
insulators: s@2c + pz@1a − s@1a. We now reinterpret
these irreps differently: from Table 1 in Ref. [22] we see
that they can be thought as forming one disconnected
branch of the composite bands formed by the sum of s
and pz orbitals sitting on the honeycomb lattice (2c).
This understanding gives us an ansatz for building the
TB model. We start with two independent orbitals (s
and pz) at the honeycomb lattice, which give the irreps
2Γ1, 2M1, K2K3, and 2Γ2, 2M2, K2K3, respectively. We
then mix the two EBR’s, undergo a phase transition,
and decompose the bands into two new branches, each
of which has the irreps Γ1 + Γ2, M1 + M2, and K2K3 —
the correct representations of 2B-1V. By this method the
tight binding model reproduces the irreps of the middle
two bands. What is left is to reproduce the correct
Wilson loop winding (in principle it may wind 3n ± 1
times.) Heuristically, the number of phase transitions
gives the winding of the Wilson loop. Since the winding
of the Wilson loop is 1 in the 2B-1V model, only one
phase transition separates this phase from the phase
described by the two orbitals with a gap between them.
By this strategy we obtain the hoppings shown in Fig.
2. Our TB model reproduces both the correct irreps,
Wilson loop winding and flat dispersion.

Our proofs of topology in low energy TBG are based on
the simplified MBM. To give them any credibility, we now
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must relate our predictions to the realistic calculations
of twisted bilayer graphene with negligible spin-orbit
coupling. We perform a series of ab-initio calculations for
i ∈ {6, 10, 16, 23, 30} where i denotes the commensurate
twist angle by the formula θi = arccos 3i2+3i+0.5

3i2+3i+1 [35]. In
our calculations, the distance between the two layers is
set to be 3.35Å. Full band structures are given in Section
6 of [22]. Our ab-initio calculations show two remarkable
features different from the MBM: 1. the PH symmetry
breaking is larger. 2. the gap at the K point of the Moiré
BZ is tiny but exists.

In Fig. 3(a), we show the evolution of the ab-initio
energy bands at Γ explicitly. The realistic TBG has two
graphene valleys. Thus the time-reversal symmetry is
recovered and the realistic TBG has a higher symmetry
group than P6′2′2. However, to keep the notations
consistent with the one-valley results, we still label
the bands by the irreps of P6′2′2 (by forgetting the
time-reversal symmetry). The gray line stands for the
2-fold 2Γ2 band and the red line stands for the 2-fold
2Γ1 band. The two blue lines stand for two different
4-fold 2Γ3 bands. The energies at the Γ point are
not PH symmetric: the gap between the lower 2Γ3

and 2Γ2 bands is much smaller than that between the
higher 2Γ3 and 2Γ1 bands. A metallic phase occurs
for the middle 4 bands for 16 < i < 30, in which
the middle 4 bands are not separated from others. In
Fig. 3(b), we calculate the gap at the Moiré K point
as a function of the twist angles (θi). we find the
gap at K always exists and varies non-monotonically
as changing theta. In the MBM, no energy difference
is expected between two K2K3 representations coming
from different valleys. However, in ab-initio calculations
of TBG without lattice warping, this is not the case.
Due to numerical difficulties, we only obtain the gap for
i = 6, 10, 16 and 23. We conjecture that the gap at
K is not negligible for an extremely small angle. Since
the experimental data suggests that the gap is small, we
are left with the conclusion that effects not introduced in
our ab-initio such as lattice relaxation and/or graphene
lattice warping, are important and render the gap at the
K point much smaller.

In conclusion, we have performed a complete and
exhaustive study of the TBG band structure and showed
that the low energy bands are always topological, as
long as the lowest two bands are gapped from the rest.
We then provided short-range toy tight-binding models
for the low energy TBG, which should (with atomic
orbitals matching the charge density of a triangular
lattice) be used to study the effects of correlations in
graphene. We then checked our results by performing
a large set of ab-initio calculations, and presented the
areas of agreement and disagreement with the simple,
continuum model, as well as possible solutions to these
disagreements.

Our work underpins topology as the fundamental
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FIG. 3. Electronic band structures with different
commensurate twist angles θi. (a) The ab-initio electronic
band structures clearly show the breaking of partical-hole
symmetry. The bands change non-monotonically as
decreasing θ. The inset is the zoomin of the blackbox area.
The two blue bands indicate two 2Γ3 bands; the gray band is
the 2Γ2 band; the red band is the 2Γ1 band. (b) The gap at
K at charge neutrality as a function of the twist angle.

property of the low energy bands of TBG. Here we briefly
discuss a few possible effects in the strong correlation
physics that may arise from the band topology. When
the interaction is smaller than the gap between the
2B-1V and other bands, an efficient way to study the
interating phase is to project the interation term to the
2B-1V low-energy space. However, since exponentially
decaying symmetric Wannier functions are obstructed
in the 2B-1V, the symmetric Wannier functions have
to be power-law decaying and the projected interation
will become effectively long-range, though the original
interaction is short-range. Novel symmetry-breaking
phases and collective modes can appear due to this
effective long-range interation. Another nontrivial effect
arising from the band topology is the large superfluid
weight in the superconducting phase. In Ref. [36] the
authors showed that when a flat band with nonzero spin
Chern number becomes superconducting, the superfluid
weight must be larger than a topological lower bound.
In Ref. [37], we show that similar effects also happen
in TBG: with certain pairing, the superfluid weight in
the superducting phase of the fragile 2B-1V has a lower
bound given by the winding number of the Wilson loop.

Note. During the extended period of time that
passed while obtaining our ab-initio results, Ref. [14] has
also predicted that the bands at half filling are fragile
topological. The differences between our papers are: our
paper contains ab-initio results essential in confirming
the nature of the bands, uses the PH symmetry to prove
all low-energy bands in TBG at any angle are topological.
Our paper does not present conjectures or proofs about
the Mott phase of TBG. After our paper was posted, Ref.
[38] proved that the C2T fragile phase with nontrivial Z2

index became Wannierizable after adding atomic bands.
This conclusion is not inconsistent with ours since stable
index does not necessarily implies non-Wannierizability.
After a very brief discussion with us, the authors of Ref.
[38] posted a version 2 of their paper which identifies
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a stable index (referred as the second Stiefel-Whitney
index). After Ref. [38] appeared, Ref. [39] presented an
elaborate study on the Stiefel-Whitney index index and
its relation with Wilson loop.
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