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Spatial stiffness modulations defined by the sampling of a two-dimensional surface provide one-
dimensional elastic lattices with topological properties that are usually attributed to two-dimensional
crystals. The cyclic modulation of the stiffness defines a family of lattices whose Bloch eigenmodes
accumulate a phase quantified by integer valued Chern numbers. Non-trivial gaps are spanned by
edge modes in finite lattices whose location is determined by the phase of the stiffness modulation.
These observations drive the implementation of a topological pump in the form of an array of
continuous elastic beams coupled through a distributed stiffness. Adiabatic stiffness modulations
along the beams’ length lead to the transition of localized states from one boundary, to the bulk and,
finally, to the opposite boundary. The first demonstration of topological pumping in a continuous
elastic system opens new avenues for its implementation on elastic substrates supporting surface
acoustic waves, or to structural components designed to steer waves or isolate vibrations.

The investigation of topologically protected
modes for robust waveguiding along boundaries or
interfaces has attracted significant interest across
different physical realms, including quantum [1],
electromagnetic [2], acoustic [3, 4] and elastic [5] me-
dia. In mechanics, topologically protected modes
have been successfully observed by establishing
Quantum hall effect (QHE) and quantum spin Hall
effect (QSHE) analogues through time-reversal sym-
metry [6–11] and spatial symmetry [5, 12–16] break-
ing.

Recently, topological waveguiding has been pur-
sued by accessing higher dimensional topological ef-
fects in lower dimensional systems [17, 18]. This
approach has been exploited to induce adiabatic
pumping of waves in one-dimensional (1D) quasi-
periodic photonic waveguides [19, 20], and to imple-
ment a four-dimensional (4D) quantum Hall system
through two-dimensional (2D) periodic arrays [21].
Also, localized modes in a chain of mechanical spin-
ners arranged in patterns obtained by projections
from manifolds have been studied in [22]. In this
letter, we investigate a family of 1D elastic lattices
where nearest-neighbor interactions are defined by
the sampling of a 2D surface, in a configuration in-
spired by the Aubry-André-Haper model [23, 24].
In line with previous work in photonics and quan-
tum mechanics [19, 25], we show that the non-trivial
topological properties of the lattice family are re-
lated to the existence of edge states for individual,
finite 1D lattices. We then consider an array of con-
tinuous beams elastically coupled by a distributed
stiffness modulated along the beams’ length. Such
a system, although continuous in nature, is gov-

erned by an eigenvalue problem of the same form
as the discrete lattice family, and, therefore, has
similar topological properties. This array supports
of a topological pump, whereby the edge modes
propagate along the beams’ length, and undergo an
adiabatic edge-to-edge transition produced by vary-
ing the phase of the coupling stiffness modulation.
This first demonstration of a topological pump in
a continuous elastic system opens new avenues for
the physical implementation of topology-based wave
guiding in mechanics, which has potential techno-
logical relevance for guiding of surface, guided and
bulk waves in acoustic devices, ultrasonic imaging
and non-destructive evaluation.

We consider a 1D lattice (Fig. 1(a)) of equal
masses m, equally spaced by a unit distance, and
connected by springs whose constant kn is defined
by sampling the 2D surface S(x, φ) = cos (2πτx+ φ)
at xn = n (Fig. 1(b)). Its topological properties are
defined by specific choices and variations of {τ, φ},
and lead to localized states at the boundaries of fi-
nite lattices, for both rational and irrational τ val-
ues [19, 25]. Herein, we consider τ = p/q, where
integers p and q are co-prime defining a periodic lat-
tice with q masses per unit cell. Accordingly, the
spring constant kn is defined as

kn = k0

[
1 + α cos

(
2πn

p

q
+ φ

)]
. (1)

A family of lattices is associated with different values
of φ, which is regarded as an additional dimension
remnant of the projection from S(x, φ). The cross-
sections (blue lines) in Fig. 1(b) show the spring con-
stant variation along the lattice for τ = p/q = 1/3
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FIG. 1. (a) Spatially modulated 1D lattices with modu-
lated stiffness kn = k0[1+α cos(2πnp/q+φ)]. (b) Surface
S(x, φ) = cos (2πτx+ φ) generating the stiffness con-
stants by sampling at xn = n. (Black lines: stiffness
variation with φ at a lattice site, blue lines: cross sec-
tions at φr = (2πr/3) (r ∈ [0, 3]) with the red dots
showing the sampled stiffness values.

and φr = (2πr/3) (r ∈ [0, 3]), which illustrates that
kn(φ+2π/q) = kn+s(φ), where s obeys the algebraic
congruence relation

ps ≡ 1 (mod q). (2)

Equation (2) has two solutions in the range |s| < q
[26], which define two shifts of stiffness in oppo-
site directions along the lattice. For p/q = 1/3
(Fig. 1(b)), the solutions s1,2 = {1,−2} correspond
respectively to a shift of one position to the left and
of two positions to the right.

The effect of these stiffness shifts on the dispersion
topology is investigated by expressing the equation
for longitudinal motion of mass n at frequency ω as

mω2un = (kn+kn−1)un−knun+1−kn−1un−1. (3)

Imposing Bloch periodicity conditions un+q =
eiµun, where µ is the non-dimensional wavenumber,
leads to the eigenvalue problem

K(µ, φ)u = Ω2u, (4)

where K(µ, φ) is a stiffness matrix and Ω = ω/ω0

is a non-dimensional frequency, with ω0 =
√
k0/m.

Solution for µ ∈ [0, 2π] gives a set of eigenvalues and
eigenvectors that are defined by φ, whose smooth
cyclic variation, i.e. φ → φ + 2π, leads to a phase
accumulation (see details in the Supplementary Ma-
terials (SM) [27])

u(µ, φ+ 2π) = eisµu(µ, φ). (5)

This phase accumulation is indicative of the non-
trivial topology of the Bloch eigenmodes u(µ, φ) and
is quantified by the Chern number of this vector field
in the (µ, φ) ∈ T2 = [0, 2π]× [0, 2π] space [7, 28]:

C =
1

2πi

∫
D
∇×A dD, (6)

where D = T2, ∇ = (∂/∂µ)eµ + (∂/∂φ)eφ and
A = u∗ · ∇u, with ()∗ denoting a complex conju-
gate. Analytical evaluation of the Chern number
according to the procedure detailed in the SM [27]
gives C = s, where s is one of the solutions of
Eqn. (2). Among the two solutions, the Chern num-
ber is numerically evaluated using the procedure de-
scribed in [29], which yields the results displayed in
Fig. 2(a). A label for gap r is given by the algebraic
sum of the Chern numbers of the bands below it,

i.e. C
(r)
g =

∑r
n=1 Cn [30]. This gives C

(1)
g = 1

and C
(2)
g = −1 for the lattice considered herein

(Fig. 2(a)). Non-zero gap labels signal the presence
of topological edge modes spanning the bandgaps as
the phase parameter φ varies [25, 31]. This is illus-
trated for a free-free lattice with N = 60 masses,
p/q = 1/3, N/q = 20 unit cells, and α = 0.6. Fig-
ure 2(b) shows the eigenfrequencies (black lines),
superimposed to the bulk bands depicted by the
shaded gray areas. The presence of two additional
modes (red lines) spanning the bandgaps is a no-
table feature of the finite system spectrum, where
solid and dashed lines indicate modes localized at
the right and left boundary, respectively. The local-
ized states of the finite system change their localiza-
tion edge as their branches touch the boundaries of
the corresponding gaps. An example of such transi-
tion for the edge mode in the second gap is shown in
Fig. 2(c). The transitions are characterized by the
gap label, which measures singularities (zero com-
ponents) of the Bloch eigenvectors along the branch
defining the lower boundary of the gap [31]. Its abso-
lute value |Cg| equals the number of times the left (or
right) edge state traverses the gap for φ ∈ [0, 2π]. In
Fig. 2, both gap labels are |Cg| = 1, which indicates
that the associated edge states traverse the gap once.
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FIG. 2. Dispersion properties for p/q = 1/3, α = 0.6 lattice. (a) Dispersion surfaces as a function of µ and φ
showing 3 bulk bands and two bandgaps. Corresponding Chern numbers and gap labels are added for convenience.
(b) Natural frequencies of a commensurate finite chain of 60 masses and their variation in terms of φ (black lines)
superimposed to the bulk bands (shaded gray regions), where edge modes (red lines) span the gaps. (c) Magnitude
of the topological mode in the second gap and its the transition from right to left localization resulting from the
variation of φ.

Furthermore, the gap label sign defines the direction
of the transition: Cg > 0 defines a right-to-left tran-
sition for increasing φ, whereas Cg < 0 signals an
opposite transition. For Cg > 0, the transitions oc-
cur when the branches for both modes merge with
the lower boundary of their gap at φ = 0, 2π, while
an opposite occurs when the modes touch the upper
boundary of the gap at φ = π. (See SM [27] for an
additional example for a p/q = 1/5 lattice).

The transition of the edge states is employed for
a topological pump that exploits the adiabatic vari-
ation of φ along a second dimension [19]. We illus-
trate the concept in an array of continuous waveg-
uides (beams) aligned along the y direction, and
coupled by distributed springs of constant γn along
x (Fig. 3(a)). The springs react proportionally to
the relative transverse displacement (also along x)
of neighboring beams, so that the governing equa-
tion for the n-th beam reads

EI
∂4wn
∂y4

+ρA
∂2wn
∂t2

+ (γn−1 + γn)wn

− γn−1wn−1 − γnwn+1 = 0,

(7)

where wn is the displacement of the n-th beam,
while ρ,E,A and I denote respectively mass den-
sity, Young’s modulus, cross-sectional area and sec-
ond moment of area of each beam. Imposing plane
wave harmonic motion along y, i.e. wn(y, t) =
wne

−i(ωt−κyy) where κy is the wavenumber, gives

(ρAω2 − EIκ4y)wn =

(γn + γn−1)wn − γnwn+1 − γn−1wn−1.
(8)

Equation (8) is of the same form as the lat-
tice equation (Eqn. (3)). Thus, similar topo-
logical considerations can be made for modula-
tions of the coupling stiffness in the form γn =

γ0

[
1 + α cos

(
2πn

p

q
+ φ

)]
. Considering again p, q

as co-primes, e.g. p/q = 1/3, and enforcing Bloch
conditions wn+q = eiµxwn leads to an eigenvalue
problem in the form K(µx, φ)w = λ2w, where K is
the same stiffness matrix that appears in Eqn. (4).
The only differing term is the expression of the
eigenvalue λ2 = (Ω2 − β4

y), where Ω = ω/ω0, with

ω2
0 = ρA/γ0, and βy = κy(EIγ0 )1/4. For arrays with

a finite number N of beams, letting βy = 0 and
φ ∈ [0, 2π] produces a diagram identical to that
of Fig. 2(b), with edge states spanning the bulk
gaps. Variation of βy shifts the entire spectrum,
including the edge states, as shown for a system
of N = 15 beams in Fig. 3(b), where frequencies
Ω(φ, βy) of the edge states are represented by red
surfaces, while the bulk bands are the shaded gray
volumes. Motivated by the topological pumping pro-
cess described next, the dispersion surfaces are dis-
played in the range φ ∈ [1.75π, 2.25π], which cor-
responds to φ ∈ [−0.25, 0.25π] due to the periodic-
ity of γn(φ). As in 1D lattices, variations of φ lead
to transitions of the edge states. The dashed and
solid red lines at βy = 0.8 in Fig. 3(b) respectively
denote left-localized and right-localized modes, and
illustrate the transition at φ = 2π that occurs along
the entire surface of the edge states.
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FIG. 3. Dispersion properties for system of coupled beams. (a) Schematic of the lattice of coupled beams: thick black
lines show the beams in a notional deformed configuration, while the red lines correspond to the undeformed state.
The thin black horizontal lines depict the distributed springs of constant γn coupling the beams. (b) Dispersion
Ω(φ, βy) for array comprising N = 15 identical beams with stiffness parameters p/q = 1/3, α = 0.6. (c) Wavenumber
βy as function of φ for fixed frequency Ω = 2.1, corresponding to the cross-section illustrated by the blue plane in

(b). The contours represent the Fourier decomposition of the displacement field |Ŵ (τ, βy)|, revealing the adiabatic
evolution experienced by the waves.

To implement the pump, we first observe a cross
section of the dispersion diagram of Fig. 3(b) at a
given frequency (blue plane at Ω = 2.1 in Fig. 3(b)),
which is shown in Fig. 3(c). The bulk bands (shaded
gray areas) are populated by the modes of the fi-
nite system (solid black lines), while the edge states
in the gaps are again highlighted by the red lines
(solid and dashed). By exciting the system of beams
at this frequency, and applying a slow modulation
of φ along y, topological pumping can be induced
through the adiabatic [32] evolution of one of the
edge states. In contrast to time-modulated mate-
rials, the pumping in spatially modulated lattices
occurs at a single frequency along the wavenumber
branch of the edge state. To demonstrate this, we
consider a system of N = 15 coupled beams that
are infinite along +y and are excited at y = 0 by
an imposed displacement in the form of a 50-cycle
sine burst signal of center frequency Ω = 2.1, and
x-wise spatial distribution corresponding to the lo-
calized mode in the first gap of Fig. 3(c). The pa-
rameter φ is varied linearly along y from φ1 = 1.75π
to φ2 = 2.25π to induce the mode transition from
left-localized to right-localized. The response of the
lattice is evaluated using the frequency domain for-
mulation of the equations of motion, as detailed in
the SM [27], which allows for a solution that is com-
putationally efficient and free from potential inaccu-
racies caused by spatial polynomial discretization.
The simulation results of Fig. 4 show the lattice

deformed configuration at 3 subsequent normalized
time instants τ = ω0t. The figures illustrate the
transition from left-localized wave (left), to a bulk
wave (middle), and finally to a right-localized wave
(right) that characterizes the pump. The video an-
imation of the full transient response is provided in
SM [27].

To illustrate the adiabatic nature of the pump,
we perform a time-frequency analysis to repre-
sent the displacement field in the reciprocal space
Ŵ (τ,Ω, µx, βy) as a function of time. For visual-
ization purposes, the L2 norm along the {Ω, µx} di-
mensions is then taken so that a function of only
time and normalized wavenumber βy remains, i.e.

Ŵ (τ, βy). The results are displayed as contour plots
in Fig. 3(c), where the color represents the nor-
malized magnitude of the decomposed displacement
field |Ŵ (τ, βy)|. The procedure reveals the evo-
lution experienced by the waves: their amplitude
is initially distributed around wavenumbers βy cor-
responding to the excited left-localized topological
mode, and, as time elapses, it follows the evolution
of that mode. At the end of the process, most of the
energy is concentrated on the right-localized mode,
while some energy is scattered to a neighboring bulk
mode. Under the conditions stated by the adiabatic
theorem [32], such scattering is expected to occur
near the transition point φ = 2π, where the eigen-
value of the topological mode approach that of the
neighboring bulk mode.
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FIG. 4. Topological pumping through adiabatic evolution of the edge state. Snapshots of three time instants
illustrate the transition from left-localized, to bulk and finally to right-localized mode as the wave propagates along
the y direction. Deformed configurations show absolute value of beam deflections |wn(y, t)|, represented along the
vertical direction and also quantified by the associated colormap for ease of visualization.

We investigate the implementation of a topolog-
ical pump through spatial modulation of the prop-
erties of elastic lattices. The presented results open
avenues for the implementation of adiabatic topolog-
ical pumping in continuous elastic media where ma-
terial properties and/or geometry can be designed
to produce spatial stiffness or inertia modulations.
The proposed framework allows the study of systems
with properties that are generally modulated along
a second dimension, both spatial and temporal. In
future work the role of non-linear interactions may
be explored in the context of amplitude-dependent
behavior [33], robustness of the edge states [34], and
as gap opening mechanism in analogy with Mott
insulators [35]. The results provide guidelines for
future designs of structural components or acous-
tic waveguides capable of selectively guiding waves
along desired paths, and of localizing perturbation
in predefined regions of the domains.
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