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We demonstrate how the combination of oscillating magnetic forces and radio-frequency (RF)
pulses endows RF photons with tunable momentum. We observe velocity-selective spinflip transi-
tions and the associated Doppler shift. Recoil-dressed photons are a promising tool for measure-
ments and quantum simulations, including the realization of gauge potentials and spin-orbit coupling
schemes which don’t involve optical transitions.

The field of cooling and trapping atoms depends on
mechanical forces exerted by light through photon recoil
[1]. Since photons can be scattered only by admixing
electronically excited states, the mechanical forces due to
light always involve dissipation by spontaneous emission.
This is desirable in laser cooling but causes heating and
atom loss in other situations where it is often suppressed
by using far off resonant light (e.g., in optical lattices).

In this work we show how to dress radio-frequency
(RF) photons with tunable recoil momentum by combin-
ing RF pulses with an oscillating magnetic force. This
is a new application of Floquet engineering: periodically
driven systems can have time-averaged properties which
cannot be achieved with constant fields. Well-known ex-
amples are the Kapitza pendulum, Paul traps for ions,
and the realization of Hamiltonians with complex tunnel-
ing matrix elements for ultracold atoms in optical lattices
[2–4].

The question how to replace photon recoil by other
forces was raised in the context of spin-orbit coupling
for ultracold atoms [5]. The well-established two-photon
scheme is limited by heating due to spontaneous emission
of photons. This limitation has motivated the develop-
ment of alternative schemes which use time-dependent
magnetic fields [6–9] to realize spin-dependent synthetic
gauge fields. Some of those schemes are fairly complex,
and have motivated the question: is it possible to Flo-
quet engineer an RF or microwave transition between two
spin states in such a way that it shows all aspects of recoil
momentum?

With this motivation, we propose and demonstrate the
new concept of recoil-dressed RF photons. This scheme
allows to conduct Doppler-sensitive spectroscopy and ve-
locimetry of molecules when suitable optical transitions
are not available. It is a building block for quantum simu-
lations, and offers a new approach for spin-orbit coupling
using time-dependent magnetic forces. In our scheme,
we drive RF transitions between two different hyperfine
states in the presence of an alternating magnetic field
gradient. The time-averaged evolution is an RF transi-

tion where recoil momentum is transferred. The sign and
magnitude of the momentum kick is adjustable via the
magnetic fields, and we observe a recoil momentum for
the dressed photon which is 6×106 higher than the (usu-
ally negligible) momentum of a bare RF photon around
8 MHz frequency.

Our scheme shows the power of Floquet engineering:
we combine an RF transition, which has negligible mo-
mentum transfer, with a sinusoidally oscillating magnetic
field gradient, which has no time-averaged momentum
transfer, and the result is an RF photon with recoil, de-
pending on how RF pulses are synchronized with the
time-dependent magnetic field gradient.

Figure 1 shows the time sequence of our scheme, which
consists of a sinusoidal spin-dependent force f(t) =
gFµBB

′
0 sin( 2π

T t + φRF )σz, where gF is the Lande fac-
tor, µB is the Bohr magneton and B′0 is the magnitude
of the magnetic gradient, and a synchronized sequence
of short RF pulses at times t = 0, T, 2T... The timing of
the pulses with respect to the periodic force is described
by the phase φRF which determines the magnitude of
the photon recoil. Each of the RF pulses couples spin-up
and spin-down states with the same momentary (i.e. at
the time of the RF pulse) velocity vRF . For φRF = 0
the velocities averaged over a full cycle of the oscillating
force, 〈v↑〉 and 〈v↓〉 are different. By flipping the spin,
atoms experience an “extra” half-cycle of the magnetic
acceleration (hatched area in Fig. 1(a)), which trans-
fer them to the state with a different averaged velocity,
and, therefore, provides recoil. For the case φRF = π/2,
the time-averaged velocities for spin-up and spin-down
are identical to vRF . Therefore, an RF transition will
not change the time-averaged velocities, and there is no
recoil.

Using this semiclassical picture, we obtain for the
amount of momentum transfer ~k = m(〈v↑〉 − 〈v↓〉) =
~k0 cosφRF , where k0 = gFµB

π~ B′0T . Next we discuss
where the change in kinetic energy comes from. For an
optical transition with recoil ~k and an atom moving at
initial velocity vin, the resonance frequency is shifted by
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FIG. 1. Illustration of our scheme for creating a tunable
atomic recoil momentum with RF transitions using mag-
netic forces. (a) & (b) shows the experimental conditions for
φRF = 0 and φRF = π/2, respectively. The spin-dependent
forces and velocities are shown (as thick solid lines) for the
amplitude of the wavefunction which is transferred from spin
down (red) to up (blue) by the RF pulse marked by the gray
dashed line. For φRF = 0, the average velocities 〈v↓〉 and 〈v↑〉
are different, which implies a finite recoil associated with the
spin-flip. In contrast, 〈v↓〉 = 〈v↑〉 for φRF = π/2 and there is
no recoil.

the Doppler shift kvin and recoil shift (~k)2/2m which
ensures energy conservation. However, in the current sit-
uation, energy can also come from the time-dependent
magnetic force. Indeed, if we would apply a single RF
π pulse at phase φRF = 0, the time-averaged velocity
would change by ~k0/m, but the RF resonance frequency
would be independent of velocity and k0. However, if a
series of RF pulses is used, as in (Fig.1), the resonance
is Doppler shifted and becomes velocity selective. This
can be seen by regarding the pulses as Ramsey pulses,
and considering the phase evolution of the wavefunction
between two pulses. The RF pulses create a superpo-
sition of spin up and spin down. Between pulses, the
phase evolution for spin up/down is solely determined
by the kinetic energy α↑↓ = 1

~
∫

(mv2↑↓/2)dt, leading to a

phase difference δα = 1
~ (m(〈v↑〉 − 〈v↓〉)vRF )T = kvRFT

after one period of shaking, where vRF = (v↑ + v↓)/2 is
the common velocity at the moment of RF pulse. With
〈v↓〉 = vRF − ~k/2m we find that for resonant excita-
tion, the RF frequency has to compensate for this phase
shift by the Doppler detuning k〈v↓〉 and the recoil shift
(~k)2/2m (see Supplement for more details).

Periodic Hamiltonians are formally treated by Floquet
theory [2, 3, 10–12], which provides an expression for
an effective Hamiltonian Ĥeff describing the slow time
evolution of the system averaged over the fast micromo-
tion with period T . However, in the standard treatment
the effective Hamiltonian is not unique and may depend
on the initial time when the periodic drive is switched
on. We adopt the approach of reference [2] where the
evolution of the quantum system with periodic drive is
expressed by an effective Hamiltonian independent of ini-

tial and final times ti, tf and a kick (micromotion) op-

erator K̂, which describes the initial kick due to a sud-
den switch on and the subsequent micromotion, shown

as Û(tf , ti) = e−iK̂(tf )e−iĤeff (tf−ti)eiK̂(ti).
For our scheme, the time-dependent Hamiltonian of

the system in the frame rotating with the RF drive after
the rotating-wave approximation is

Ĥ =
p̂2z
2m

+ ~k0ẑ
π

T
sin(2πt/T + φRF )σ̂z

− 1

2
~δRF σ̂z + ~Ωσ̂xT

∑
n

δ(t− nT ), (1)

where δRF is the RF detuning with respect to the atomic
resonant frequency and m is the atomic mass. The short
RF pulses are represented as a series of delta-functions
with effective Rabi frequency Ω.

Through the derivation shown in the Supplement [13],
we obtain an explicit expression for the effective Hamil-
tonian and the kick operator defined above

Ĥeff =

(
p̂2z
2m + 1

16
~2k20
m − ~δRF

2 ~Ωe−ik0 cosφRF ·z

~Ωeik0 cosφRF ·z p̂2z
2m + 1

16
~2k20
m + ~δRF

2

)

K̂(t) = −ik0zσ̂z cos(
2π

T
t+ φRF ). (2)

The effective Hamiltonian is identical to the one for a
two level atom driven by a photon field at frequency ωRF
and with wavevector k, which confirms our discussion
above about recoil momentum and Doppler shift. The
term ~2k20/16m is the kinetic energy due to micromotion.

We implemented this scheme using a thermal cloud
of approximately 1 × 105 23Na atoms at 380 nK in
a crossed optical dipole trap with trapping frequencies
(ωx, ωy, ωz) = 2π×(98, 94, 25) Hz corresponding to Gaus-
sian radii of 19.5 µm, 20 µm and 68 µm respectively. The
|mF = −1〉 and |mF = 0〉 states of the F = 1 hyperfine
manifold of the atoms were used to form a pseudospin-
1/2 system, which will be referred to as |↑〉 and |↓〉 states,
respectively. The |mF = 1〉 state was decoupled from this
2-level system through the quadratic Zeeman effect at a
bias field of 11.4 Gauss. Since there is no micromotion in
the “non-magnetic” |mF = 0〉 state, the maximum mo-
mentum transfer ~k0 is reduced by a factor of two com-
pared to the discussion above.

The oscillating magnetic force was created by a time-
dependent 3D quadrupole field. Along the bias field di-
rection z, this provides a 1D periodic force. Orthogonal
to the bias field, the periodic potential is quadratic —
there is no net force, only a (negligible) modulation of the
confinement. The amplitude of the magnetic field gradi-
ent was 48 G/cm at a frequency of 5 kHz, implying a
recoil k0 = 0.07kL where ~kL is the recoil of the resonant
transition at 589 nm, with a recoil velocity ~kL

m = 2.9
cm/s.
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To resolve Doppler shifts of 200 Hz, sub-milliGauss sta-
bility was needed. Any asymmetry of the periodic mag-
netic field gradient leads to a time-averaged DC field gra-
dient resulting in an inhomogeneous Zeeman shift which
had to be suppressed at the 100 Hz level. Finally, the
applied magnetic fields were modified by eddy currents
in the stainless steel chamber, which had to be accounted
for (see Supplement).

The goal of the experimental demonstration was to
show that the RF transition is now Doppler sensitive due
to the recoil transfer. The spinflip transitions were driven
by 4 µs long RF pulses at 8 MHz with a Rabi frequency
of 10 kHz resulting in approximately π/12 pulses and an
average Rabi frequency of Ω = 200 Hz which is defined
as the Rabi frequency of the pulse times the duty cy-
cle. Since it was not possible to switch off the shaking
coils on micro-second time scales, the RF pulses had to
be applied with the magnetic shaking present, which re-
quired several steps of spatial and temporal alignments
(See Supplement).

The RF pulses and the shaking were applied while the
atoms were trapped to ensure that the velocity distribu-
tion is independent of position. In time-of-flight (TOF),
this is no longer the case, and any residual Zeeman shift
gradients could lead to velocity selection. To avoid broad-
ening of the Doppler selected velocity groups by the trap-
ping potential, the total interrogation was chosen to be
1.6 ms, much shorter than the trap period along the z
direction. This time is also comparable to the coherence
time due to the ambient magnetic field stability. Based
on these considerations, we applied a pulse sequence of
2 ms consisting of 10 magnetic shaking cycles with 9 RF
pulses across them.

The temperature of the cloud was chosen to be high
enough that the Doppler width of 3 kHz (FWHM) was
larger than our spectral resolution, mainly Fourier lim-
ited to 625 Hz by the 1.6 ms pulse sequence. Due to
the Doppler shift, different detunings of the RF selected
different velocity groups which were observed in ballis-
tic expansion (Fig. 2). The width of the observed spin
flipped slices is almost completely determined by the orig-
inal spatial size of the cloud since the expansion time of
τ = 12 ms was only twice the inverse of ωz. The TOF was
limited by signal-to-noise, given the constraints discussed
above. Fortunately, even for small TOF, the displace-
ment of the center of the spinflipped atoms is exactly vτ ,
which could be accurately measured as a function of RF
detuning, as shown in Fig. 3. The observed Doppler shift
is in agreement with the theoretical treatment above and
confirms that RF photons have been Floquet engineered
to have recoil of k = 0.07kL.

The dependence of the recoil on the RF phase was
demonstrated by shifting the RF phase from 0 to π (Fig.
3(b)). The Doppler shift and therefore the direction of
the recoil changed sign. This observation confirmed that
the selection of slices in Fig. 2 is not due to time-averaged
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FIG. 2. Observation of velocity selective RF transitions.
(a) Absorption images of the spin-flipped atoms (i.e. in
the |mF = −1〉 state) after 12 ms of TOF with and with-
out magnetic shaking. The yellow dashed ellipses have major
and minor axes obtained as FWHM of Gaussian fits. After
TOF, the thermal could expands by a factor of 2.13, thus
a single-velocity class is narrower than the thermal cloud by
1/2.13 ≈ 0.47. The Fourier limit of our velocity selection in-
creases this to 0.50, and inclusion of eddy currents further
modifies it to 0.45 (dashed-dotted line). The field of view is 1
mm by 1 mm. (b) Integrated column density distribution ob-
tained from absorption images like those in (a), for different
detunings of the RF frequency. The solids lines are Gaus-
sian fits to the data points. The RF phase was at φRF =
0 to maximize Doppler sensitivity. The asymmetry between
the ±300 Hz is most likely caused by bias field drifts (esti-
mated in Fig. 3 to be 70 Hz) or small residual magnetic field
gradients.

magnetic field gradients, which don’t depend on the RF
phase. We couldn’t experimentally explore φRF = π/2,
since this would have required to pulse on the RF at the
maximum field gradient which would have caused large
spatially dependent detunings.

Our scheme can be used to implement one-dimensional
spin-orbit coupling of ultracold atoms with magnetic
forces and without lasers. The Hamiltonian (Eq. 3)
which we have implemented is, by a unitary transforma-
tion, equivalent to a Hamiltonian with spin-dependent
gauge fields [4],

ĤSOC =
1

2m
(p̂z −

1

2
Aσ̂z)

2 + ~Ωσ̂x −
~δRF

2
σ̂z. (3)

We note that reference [14] obtains the same Hamiltonian
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FIG. 3. Observation of RF transitions with Doppler shifts.
(a) & (b) Central velocities of the spin-flipped atomic distri-
bution (as in Fig. 2(b)) are shown as a function of RF detun-
ing for φRF = 0 and φRF = π, respectively. Shifting the RF
phase changes the sign of the Doppler shift and therefore the
direction of the recoil momentum. The solid line represents
the predicted Doppler shifts based on the calibration of recoil
momentum. The dashed line takes into account the effects of
eddy currents (see Supplement). The error bars are purely
statistical based on five data points and correspond to one
standard deviation. The inferred one-sigma fluctuations for
the frequency are 70 Hz.

as stroboscopic Floquet Hamiltonian. The gauge field
A = ~k0 cosφRF is equal to the recoil momentum transfer
~k which depends on the RF phase φRF . Previous ex-
perimental studies claimed the realization of spin-orbit
coupling and gauge fields purely by magnetic shaking,
without RF transitions [8, 15]. These claims are ambigu-
ous based on our discussion here: without RF coupling,
the momentum transfer and the gauge field are not de-
fined and can be transformed away with a gauge trans-
formation. According to Eqs. (1) and (3), pure magnetic
shaking leads only to a kick operator for the micromo-
tion, and the effective Hamiltonian is the free particle
Hamiltonian. Therefore, all observations in Refs. [8, 15]
are related to an initial kick and micromotion and not to
a modified effective Hamiltonian.

In the presence of gauge fields, there are two momenta:
the mechanical or kinetic momentum (pz ± 1

2A), and the
canonical momentum pz = mvRF . In our scheme, they
can both be directly observed and have a very transpar-
ent meaning: the kinetic momenta are the time-averaged
momenta m〈v↑〉, m〈v↓〉. The canonical momentum is the
instantaneous momentum during the RF pulse (see Sup-

plement).

Our demonstration of RF dressed photons was done
with a modest recoil k0 of 0.07 kL due to technical lim-
itations (see Supplement). The recoil could have been
increased by using a glass cell, miniature coils, or atomic
chips for which twelve times larger magnetic field gradi-
ents have been assumed [6]. Given the small value of k0,
we didn’t look for recoil effects in Bose-Einstein conden-
sates, as in [16], and rather focused on Doppler shifts in
thermal clouds.

Dressed-photon recoil has several features different
from optical photon recoil: The maximum recoil of a
dressed photon is only technically limited, and can be
tuned via the strength of the magnetic gradient and in
principle also via the RF phase, whereas the recoil in a
two-photon transition can be tuned via the angle between
the two laser beams. Heating for optical recoil transfer
is independent of momentum transfer and depends on
the Rabi frequency, whereas the reverse applies to the
magnetic scheme.

As in any Floquet schemes, micromotion can lead to
heating when the associated kinetic energy is transferred
to the secular motion by elastic collisions between the
two spin states (which is equivalent to transitions be-
tween Floquet states of different quasi-energies). In ref-
erence [17], we describe various cases (high and low tem-
perature limit, bosons, and fermions) and conclude that
the energy transfer can be expressed by Ė ∝ ρσvcolE0,
where vcol reflects an effective density of states. For Bose-
Einstein condensates, vcol =

√
~ω/m for large modula-

tion frequencies ω, implemented in our experiments, and
vcol = ~k0/m in the semi-classical regime. Here ρ is the
density, σ is the two-body s-wave scattering cross section.
For a sodium condensate with two spin components and
density ρ ∼ 1014 cm−3, we observed a condensate life-
time of ∼ 8s at k0 = 0.05kL consistent with weak Flo-
quet heating [17]. If the momentum transfer k0 is scaled
up to kL, losses increase proportional to the second or
third power of k0, depending on the regime [17]. For mo-
mentum transfers of kL, lifetimes larger than 100 ms will
require low density clouds on the order of ∼ 1012 cm−3

or small scattering lengths. For degenerate Fermi gases
with EF � ~ω, heating is Pauli suppressed by a factor
of (~ω/EF)2.

There are possible extensions of generating magnetic
recoil. One is to use the TOP trap configuration [18]
where a constant gradient is combined with a rotating
bias field in the x-y plane which creates a rotating force.
A sequence of RF pulses generates “dressed photons”
with recoil k along the cosφRFex + sinφRFey direction.
The RF phase now controls the direction of the recoil.
The concept of dressed RF photons should be useful for a
more general class of quantum simulations. For instance,
it applies to spin-dependent forces created by the vector
AC Stark shift. Using focused laser beams or lattices
to create spin-dependent potentials, the effective recoil
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is spatially localized, and can easily be time-modulated.
In comparison to magnetic field gradients, the forces due
to the vector AC Stark shift can be larger, and much
faster modulation frequencies are possible. Using opti-
cal spin-dependent forces instead of magnetic forces may
eliminate several limitations of our scheme, especially
for atoms like cesium and rubidium, where large spin-
dependent optical forces can be realized without major
heating by spontaneous scattering.

In conclusion, we demonstrated how magnetic shak-
ing can be used to endow an RF photon with large and
tunable recoil. This scheme illustrates many aspects of
Floquet engineering, including heating in both quantum
and classical limit. This technique is a building block
for quantum simulations including spin-dependent gauge
fields and measurements such as Doppler velocimetry. It
can be applied to any atom or molecule with non-zero
spin in the ground state, and is independent of the struc-
ture of electronically excited states.
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