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We introduce a family of non-integrable 1D lattice models that feature robust periodic revivals
under a global quench from certain initial product states, thus generalizing the phenomenon of
many-body scarring recently observed in Rydberg atom quantum simulators. Our construction is
based on a systematic embedding of the single-site unitary dynamics into a kinetically-constrained
many-body system. We numerically demonstrate that this construction yields new families of models
with robust wave-function revivals, and it includes kinetically-constrained quantum clock models as
a special case. We show that scarring dynamics in these models can be decomposed into a period
of nearly free clock precession and an interacting bottleneck, shedding light on their anomalously
slow thermalization when quenched from special initial states.

Introduction.—The understanding of ergodicity and
thermalization in isolated quantum systems is an open
problem in many-body physics, with important implica-
tions for a variety of experimental systems [1–5]. On
the one hand, this problem has inspired important devel-
opments such as Eigenstate Thermalization Hypothesis
(ETH) [6–8], which establishes a link between ergodicity
and the properties of the system’s eigenstates. On the
other hand, strong violation of ergodicity can result in
rich new physics, such as in integrable systems [9], Ander-
son insulators [10], and many-body localized phases [11–
13]. In these cases, the emergence of many conserva-
tion laws prevents the system, initialized in a random
state, from fully exploring all allowed configurations in
the Hilbert space, causing a strong ergodicity breaking.

A recent experiment on an interacting quantum simu-
lator [14] has reported a surprising observation of quan-
tum dynamics that is suggestive of weak ergodicity break-
ing. Utilizing large 1D chains of Rydberg atoms [14–16],
the experiment probed a “global quench” [17] by exciting
the atoms into an out-of-equilibrium state drawn from
an “infinite temperature” ensemble. For the initial Néel
state, the experiment observed persistent revivals of local
observables in the quantum dynamics, while other initial
states exhibited fast equilibration without any revivals.
The stark sensitivity of the system’s dynamics to the ini-
tial states appeared at odds with “strong” ETH [18–20].

In Ref. 21 and 22 the non-ergodic dynamics of a Ryd-
berg atom chain was interpreted as a many-body gener-
alization of the classic phenomenon of quantum scar [23].
For a quantum particle in a stadium billiard, scars repre-
sent an anomalous concentration of the particle’s trajec-
tory around (unstable) periodic orbits in the correspond-
ing classical system, which has an impact on optical and
transport properties [24–26]. By contrast, in the strongly
interacting Rydberg atom chain initialized in the Néel
state, quantum dynamics remains concentrated around
a small subset of states in the many-body Hilbert space,
thus it is effectively “semiclassical” [22]. While recent
works [27, 28] have shown that revivals can be signifi-
cantly enhanced by certain perturbations to the system,

a general understanding of the conditions that allow scars
to occur in a many-body quantum system is still lacking.

The observation of periodic dynamics was linked to the
existence of atypical eigenstates at evenly spaced ener-
gies throughout the spectrum of the system [21, 29, 30].
Highly-excited eigenstates with low entanglement have
previously been analytically constructed in the non-
integrable AKLT model [31, 32]. A few of such ex-
act eigenstates are now also available for the Rydberg
atom chain model [33]. In a related development, it
was proposed that atypical eigenstates of one Hamilto-
nian can be “embedded” into the spectrum of another,
ETH-violating, Hamiltonian [34]. However, although the
collection of models that feature atypical eigenstates is
rapidly expanding [35–41], their relation to periodic dy-
namics remains largely unclear.

In this Letter we systematically construct interacting
lattice models that exhibit periodic quantum revivals
when quenched from a Néel state. The basic building
block has a Hilbert space containing Nc states (“colors”)
and a time-independent Hamiltonian that yields periodic
unitary dynamics, U(t+T ) = U(t). The interacting mod-
els are defined by coupling these building blocks under a
kinetic constraint. Intriguingly, the dynamics in these
models decomposes into periods of nearly free preces-
sion, in which the local degrees of freedom coherently
cycle through the available states on a single site, fol-
lowed by an interacting segment of dynamical evolution,
reminiscent of a kicked quantum top [42]. In all cases,
the existence of atypical scarred eigenstates underpins
the revivals. We show that our construction includes
known models, such as chiral clock models [43], which
are shown to support scars, and also gives a way of en-
hancing the revivals in spin-s generalisations of the Ryd-
berg chain [22]. In selected cases for small values of Nc,
we numerically explore general deformations of the mod-
els, verifying that our construction yields optimal models
with the highest amplitude of the wave function revivals.

PXP model.—We start by briefly reviewing the model
of a 1D Rydberg atom chain [44–47]. The system can be
modelled as coupled two level systems (with states |0〉,
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|1〉) described by an effective “PXP” Hamiltonian

H =
∑
j

P 0
j−1XjP

0
j+1, P 0

j ≡ |0j〉〈0j |, (1)

where Xj = |0j〉〈1j |+ |1j〉〈0j | denotes the Pauli matrix.
The model in Eq. (1) describes a kinetically constrained
paramagnet [48]: each atom can flip only if both its
neighbors are in |0〉 state.

The Hamiltonian in Eq. (1) is non-integrable [21], yet
it exhibits unconventional thermalization. For example,
the model has atypical (ETH-violating) eigenstates with
low entanglement at high energy densities [29]. More-
over, when the system is quenched from the Néel ini-
tial state, |ψ0〉 = |0101 . . .〉, local observables such as
domain wall density [14] and even the many-body wave
function fidelity, F (t) = |〈ψ0|ψ(t)〉|2, all revive with the
same frequency [21, 39, 49]. At the same time, quenches
from other initial states, such as |0000 . . .〉, do not lead
to observable revivals [14]. The revival frequency from
the Néel state is set by the energy separation between
atypical eigenstates, as the same eigenstates also max-
imize the overlap with the Néel state [21]. Thus, the
quench dynamics from the Néel state is largely restricted
to few many-body eigenstates, and can be viewed as
precession of a large spin, which traces a periodic or-
bit that can be accurately captured by time-dependent
variational principle (TDVP) on a manifold spanned by
weakly-entangled states [22].

Construction of scarred models.— Consider now a sys-
tem with a local basis |0〉, |1〉, ..., |Nc − 1〉, and an ar-
bitrary time independent Hamiltonian h whose unitary
dynamics is periodic, such that UT ≡ exp(−ihT ) = I for
arbitrary T (not necessarily integer). The eigenvalues of
U are λn = exp(i2πkn/T ), with the corresponding eigen-
vectors |ψn〉, where kn are arbitrary integers. We obtain
candidate Hamiltonians h by choosing particular {λn}
which guarantee a periodic U and taking its logarithm:

h = i

Nc−1∑
n=0

2πi

T
kn |ψn〉〈ψn|. (2)

The many-body lattice Hamiltonian is defined by taking
a tensor product of h and imposing the kinetic constraint
that h only acts on sites whose neighbors are in some
unlocking state |χ〉:

H =

N−1∑
j=0

Pj−1hjPj+1, Pj ≡ |χj〉〈χj |, (3)

where N is the number of lattice sites. The only other
condition we place on h is that the many-body system
possesses a particle-hole symmetry ρ, which anticom-
mutes with H, {H, ρ} = 0, leading to the symmetry
E ↔ −E of the energy spectrum. This is motivated
by the fact that PXP model in Eq. (1) possesses such a
symmetry, and its revivals are improved by perturbations

which preserve this symmetry [27, 28]. Precise form of ρ
is unimportant here and can be found in [50]. We thus
focus on cases where {kn} are symmetric around zero,
resulting in h being off diagonal and compatible with ρ.
A particularly illustrative example of this construction is
when U is interpreted as the shift operator of a quantum
clock [43, 51, 52], as we explain next.
Scars in clock models.—The scarred clock models are

defined by choosing T = Nc, which gives

U = e−iC =

Nc−1∑
n=0

|n+ 1〉〈n|. (4)

In this case, λn = exp(2πikn/Nc) and |ψn〉 =∑Nc−1
j=0 (1/λjn)|j〉. For odd Nc, kn takes the values

−Nc−1
2 , . . . , 0, . . . , Nc−1

2 . For Nc-even, we need to dou-
ble the period, T = 2Nc, in order to make h off-
diagonal in the |j〉 basis. This allows to choose k =
−Nc−1

2 , . . . ,− 1
2 ,

1
2 , . . . ,

Nc−1
2 , and Eq. (4) continues to be

valid for Nc-even after performing a gauge transforma-
tion, |j〉 → eiπj/Nc |j〉.

The inspiration behind Eq. (4) is that local dynamics
is a cyclic rotation around the basis of Nc “clock” states
|j〉, Fig. 1(a). With h in Eq. (2) denoted by C, Eq. (3)
defines a many-clock “PCP” Hamiltonian,

Hclock =
∑
j

P 0
j−1CjP

0
j+1. (5)

Without loss of generality, the projector can be chosen
onto any of the clock basis states, e.g., P 0 = |0〉〈0|. Thus,
each site precesses around the clock if both its neighbors
are in |0〉 state, otherwise it remains frozen, Fig 1(a).
Note that the PXP model in Eq. (1) is equivalent to
Nc = 2 clock.

We have studied the PCP model in Eq. (5) using ex-
act diagonalization [53] with periodic boundary condi-
tions. For any Nc ≤ 12 accessible to us numerically,
we find long-lived oscillatory dynamics when the system
is quenched from any Néel-like state, |0101...〉, |0202...〉,
etc. Fig. 1(b) summarizes the result for Nc = 4. The
dynamics proceeds in two steps. First, each unfrozen
clock nearly freely cycles through its states, |1〉 → |2〉 →
. . . |Nc − 1〉. After this coherent process is complete,
the many-clock state shifts, |Nc − 1, 0, Nc − 1, 0 . . .〉 →
|0101 . . .〉. In this second step, interactions kick in and
some fidelity is lost to thermalization. We now see that
the PXP model is special in that it lacks free-precession
dynamics. On the other hand, similar to the PXP case,
in scarred clock models coherence also remains protected
to a large degree during the interacting part of the pro-
cess, allowing the wave function to keep returning to the
initial state.

In order to visualize the dynamics, in Fig. 1(b) we plot
the fidelity |〈φ| exp(−itH)|1010 . . .〉|2 w.r.t. several prod-
uct states |φ〉 corresponding to either the initial state, the
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Figure 1. (a) A schematic of scarred clock models. Green clock can precess because both of its neighbors are in the unlocking
state |0〉 (white), unlike the frozen red clock. (b) Dynamics of fidelity, |〈φ|e−itH |1010 . . .〉|2, for Nc = 4-color clock model in
Eq. (5). Different curves correspond to several choices of |φ〉 indicated in the legend. (c) Overlap of all eigenstates of Nc = 4-
color clock model with the Néel state |0101 . . .〉. Each dot corresponds to a single eigenstate |E〉 with energy E shown on the
x-axis. Color scale indicates the density of data points. Scarred states are marked by red circles. (d) Entanglement entropy
S of all eigenstates of Nc = 4-color clock model, plotted as a function of their energy E. Red circles indicate the matching
scarred states from (c), while a few additional scar states, associated with the a “defected Z4” state, |20002030103000〉, are
marked by blue circles. Plots (b), (c) are for system size N = 16, while (d) is for N = 14. In all cases, we resolve translation
and inversion symmetry, and plot both [k = 0, P = +] and [k = π, P = −] sectors.

internal shift of each clock, or to the overall translation
of the initial state. The duration of individual clock ticks
(e.g., |1010 . . .〉 → |2020 . . .〉) matches that of the uncon-
strained clock model. Following the convention that C is
rescaled such that nearest neighbor hoppings have mag-
nitude one, the frequency of the putative free precession
is found to be ≈ 0.902 (in units ~ = 1) while the fre-
quency of the single site precession (in the absence of a
constraint) is ≈ 0.900. We note that time evolution of
local observables is consistent with the presented picture
of the underlying dynamics [50].

Fig. 1(c) shows the overlap of all eigenstates with the
Néel state |0101 . . .〉, while Fig. 1(d) shows the bipartite
entanglement entropy S = −trρA ln ρA, where ρA is the
reduced density matrix of one half of the chain. The scar
states are easily identifiable as a band of special eigen-
states (circled in red) that extend throughout the spec-
trum. Total number of special states is (Nc − 1)N + 1.
Similar to the PXP model, the special eigenstates are dis-
tinguished by their high overlap with the Néel state, or
alternatively as ones with atypically low entanglement.
Note that some of the eigenstates with small entangle-
ment belong to a different band of scarred states associ-
ated with a “defected Z4” state |20002030103000〉 [blue
circles in Fig. 1(d)]. Apart from these special states,
there are tower structures in the spectrum which reflect
the clustering of neighboring eigenstates around the en-
ergies of the scarred eigenstates. Deep in the bulk of the
spectrum, the density of states [indicated by color scheme
in Fig. 1(c)] appears uniform, as expected from the ETH.
Indeed, at N = 14 we find a mean level spacing ratio [54]
of 〈r〉 = 0.5218, consistent with Wigner-Dyson statistics.
We have confirmed that the frequency of the revival to
the initial state matches the energy separation between
special eigenstates in Fig. 1(c).

Relation to spin-s and chiral clock models.—In

Ref. [22] the TDVP approach was generalized to spin-s
PXP models with the kinetic constraint P 0. Periodic re-
vivals were numerically demonstrated for s = 1, 2. Both
spin-s PXP model and Nc = 2s + 1 colored PCP clock
models are obtained from our construction in Eq. (3) by
taking k = −s, ..., s. Thus by performing a basis rotation,
the clock Hamiltonian can be expressed in the spin ba-
sis, Hclock =

∑
j P
′
j−1XjP

′
j+1, where P ′ is a deformation

of P 0 in Eq. (5) [50]. We have numerically found that
the number of scarred states remains the same for PXP
models expressed in terms of either the spin P 0 or P ′;
however, for Nc-odd the amplitude of the revivals is al-
ways higher when using P ′ instead of spin P 0 [50]. Thus,
our construction shows how to improve the revivals in the
standard PXP models. In addition, mapping to the clock
representation allows to clearly delineate nearly-free pre-
cession from the interacting part of the dynamics, which
is not transparent in the spin representation.

Furthermore, our construction includes models for
which C is not related to spin matrices via a change
of basis. One family of models for even Nc is obtained
by choosing k = −Nc

2 , . . . ,−1, 1, . . . , Nc

2 , with P 0 as
above. For Nc = 4, this results in the 4-color Chiral
Clock Model (CCM) at the fixed point in the disordered
phase [43, 50, 55]. This model exhibits two types of oscil-
latory behavior: quenches from |0202...〉 result in slowly
decaying fidelity revivals, while quenches from |1010...〉,
|3030...〉 essentially freeze out the 0 sublattice and the
system oscillates like a nearly free paramagnet [50].

General phase diagram of scarred models.—We now
perform an extensive search for scarred models with the
fixed kinetic constraint P 0. By varying elements of C,
we scan all models of the form Eq. (5). We map out
the phase diagram of these models based on the quality
of scars, i.e., the first revival maximum of the fidelity
from the Néel-like states. We restrict the matrix C to be
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Figure 2. The phase diagram of scarred models with Nc = 4
and projector P 0. Shown in (a), (b) are two slices of the
phase diagram obtained by varying the matrix elements of C,
defined in the text. Color scale represents the maximum of
the first fidelity revival for quenches from any of the states
|0101 . . .〉, |0202 . . .〉, |0303 . . .〉. Results are for system size
N = 10. Labels on the diagrams refer to special limiting
cases defined in the text. Scarred models can be accurately
predicted based on the commensurability of the eigenvalue
spectrum of C, as denoted by lines and explained in the text.

purely imaginary and off diagonal, as this preserves the
desired particle-hole symmetry [50].

Consider the Nc = 4 case. Allowed distortions involve
varying 5 matrix elements in C, so we take slices where
only two parameters are simultaneously varied. We con-
sider two cases, (a) vary the next-nearest-neighbor hop-
pings C02 = C13 = αi, while also varying C03 = −βi,
or (b) switch off next-nearest-neighbor hoppings, while
varying C12 = −αi and C03 = −βi. The correspond-
ing phase diagrams are shown in Fig. 2. These diagrams
include several limiting cases at special values of (β, α).
For variation (a), we have: (i) (1, 1/

√
2) is Nc = 4 clock;

(ii) (−1, 0) is Nc = 4 CCM model. For variation (b):
(iii) (0, 2/

√
3) is spin- 32 PXP; (iv) (1,−1) is also Nc = 4

CCM; (v) at (0, 0), we have C = i
∑
j=0,2 |j〉〈j+1|−h.c.,

which (with P 0) can be viewed as the sum of a spin- 12
PXP and a free s = 1

2 paramagnet. Points marked F
correspond to decoupled free paramagnets.

The maximum fidelity at first revival for Nc-even is
generally comparable between clock and spin-s PXP
models. For example, for Nc = 4 in Fig. 2, Fmax ≈
0.761 (clock) and Fmax ≈ 0.783 for spin- 32 PXP. For
Nc = 6 and N = 8, we obtain Fmax ≈ 0.813 (spin) and
Fmax ≈ 0.802 (clock), while for Nc = 8, N = 8 we find
Fmax ≈ 0.793 (spin) and Fmax ≈ 0.806 (clock). On the
other hand, for Nc-odd, we find a considerable improve-
ment in the fidelity of a clock compared to the spin-s PXP
model. For example, for Nc = 3, the maximum fidelity of
the clock model is Fmax ≈ 0.724 versus Fmax ≈ 0.653 for
spin-1; for Nc = 5, N = 10, the improvement is even big-
ger, Fmax ≈ 0.563 vs. Fmax ≈ 0.766 (clock) [50]. Thus,
our construction for odd Nc gives a way to improve the
revivals over corresponding s = (Nc− 1)/2 PXP models.

Since the phase diagram in Fig. 2 is quite rich, we
look for a simple guiding principle that predicts the most

robust scarring models. The commensurability of the
eigenvalue spectrum of C provides such a criterion – see
lines and dots in Fig. 2. White lines mark the models for
which C has equidistant energy levels, En = kε, k ∈ Z.
Our Nc = 4 clock model lies on one of these lines, as
shown in Fig. 2(a). We can consider further commen-
surability conditions where the energy spacings of C are
in simple ratios such as 1:2 (purple lines). Finally, red
points mark the cases where C contains one pair of de-
generate eigenvalues. One of these points is the Nc = 4
CCM at its fixed point in the disordered phase. Another
one, along the diagonal in Fig. 2(b), hosts a combina-
tion of the free paramagnet and spin- 12 PXP model. In
fact, revivals in models lying on red lines are generically
due to the model effectively becoming a free paramagnet
when quenched from specific Néel like states, due to one
of the sublattices being frozen out. We note, however,
that our simple criterion based on the non-interacting
spectrum of C only serves as a rough indicator of scar-
ring models, i.e., it overpredicts the number of models
as one would expect from a single-particle criterion. The
precise parameter values where such models are realized
are determined by the non-trivial interplay between this
condition and the kinetic constraint, i.e., P 0.

Conclusion.—We have presented a systematic con-
struction of non-integrable PCP models exhibiting many-
body revivals and quantum scars. The construction
is based on embedding local unitary precession, UT =
e−iCT = I, into an interacting quantum system. The
obtained models are expressed in terms of kinetic con-
straints which arise in quantum simulators in the Ry-
dberg blockade regime [14, 39, 56]. Kinetic constraints
of this kind also emerge naturally in lattice gauge the-
ories, which have recently been realized in periodically
driven optical lattices [57]. The strongest reviving mod-
els are predicted by considering the commensurability of
C’s eigenvalues. For odd Nc and equidistant eigenval-
ues for C, the obtained models revive better than the
corresponding spin s = (Nc − 1)/2 PXP model. Ro-
tating C → X, P → P

′
, our construction thus pro-

vides a prescription for improving PXP revivals. If we
do not restrict to equidistant eigenvalues of C, our con-
struction yields further families of scarred models not re-
lated to PXP by rotation. Further, clock models provide
a simple physical picture of the underlying dynamics –
a period of nearly free precession followed by an inter-
acting bottleneck. This “effective drive” is reminiscent
of kicked systems, where mixed phase space dynamics
(both recurrent and thermalizing behavior) can emerge
due to the presence of a continuous spectrum in the Flo-
quet operator [58]. Taking the same constraint UT = I,
one can also engineer time-translation symmetry break-
ing in driven systems [59, 60]. These observations suggest
a deeper connection between oscillatory scarred models
and time crystals, complementing recent description of
scarred PXP states as π magnon condensates which pos-
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sess long range order in both space and time [30].
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Pasquale Calabrese, “Real-time confinement following
a quantum quench to a non-integrable model,” Nature
Physics 13, 246 EP – (2016).

[36] Andrew J. A. James, Robert M. Konik, and Neil J.
Robinson, “Nonthermal states arising from confinement
in one and two dimensions,” Phys. Rev. Lett. 122, 130603
(2019).

[37] Neil J. Robinson, Andrew J. A. James, and Robert M.
Konik, “Signatures of rare states and thermalization in
a theory with confinement,” Phys. Rev. B 99, 195108
(2019).

[38] Thomas Iadecola and Marko Znidaric, “Exact local-
ized and ballistic eigenstates in disordered chaotic
spin ladders and the Fermi-Hubbard model,” arXiv
e-prints , arXiv:1811.07903 (2018), arXiv:1811.07903
[cond-mat.str-el].

[39] Federica M. Surace, Paolo P. Mazza, Giuliano Giu-
dici, Alessio Lerose, Andrea Gambassi, and Mar-
cello Dalmonte, “Lattice gauge theories and string dy-
namics in Rydberg atom quantum simulators,” arXiv
e-prints , arXiv:1902.09551 (2019), arXiv:1902.09551
[cond-mat.quant-gas].

[40] Seulgi Ok, Kenny Choo, Christopher Mudry, Clau-
dio Castelnovo, Claudio Chamon, and Titus Neupert,
“Topological many-body scar states in dimensions 1,
2, and 3,” arXiv e-prints , arXiv:1901.01260 (2019),
arXiv:1901.01260 [cond-mat.other].

[41] Shriya Pai, Michael Pretko, and Rahul M. Nand-
kishore, “Robust quantum many-body scars in frac-
ton systems,” arXiv e-prints , arXiv:1903.06173 (2019),
arXiv:1903.06173 [cond-mat.stat-mech].

[42] F. Haake, Quantum Signatures of Chaos, Physics and
astronomy online library (Springer, 2001).

[43] Paul Fendley, “Free parafermions,” Journal of Physics A:
Mathematical and Theoretical 47, 075001 (2014).

[44] B. Sun and F. Robicheaux, “Numerical study of two-
body correlation in a 1d lattice with perfect blockade,”

New Journal of Physics 10, 045032 (2008).
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