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Benchmarking methods that can be adapted to multi-qubit systems are essential for assessing the
overall or “holistic” performance of nascent quantum processors. The current industry standard is
Clifford randomized benchmarking (RB), which measures a single error rate that quantifies overall
performance. But scaling Clifford RB to many qubits is surprisingly hard. It has only been per-
formed on 1, 2, and 3 qubits as of this writing. This reflects a fundamental inefficiency in Clifford
RB: the n-qubit Clifford gates at its core have to be compiled into large circuits over the 1- and
2-qubit gates native to a device. As n grows, the quality of these Clifford gates quickly degrades,
making Clifford RB impractical at relatively low n. In this Letter, we propose a direct RB protocol
that mostly avoids compiling. Instead, it uses random circuits over the native gates in a device,
seeded by an initial layer of Clifford-like randomization. We demonstrate this protocol experimen-
tally on 2 – 5 qubits, using the publicly available IBMQX5. We believe this to be the greatest
number of qubits holistically benchmarked, and this was achieved on a freely available device with-
out any special tuning up. Our protocol retains the simplicity and convenient properties of Clifford
RB: it estimates an error rate from an exponential decay. But it can be extended to processors with
more qubits – we present simulations on 10+ qubits – and it reports a more directly informative
and flexible error rate than the one reported by Clifford RB. We show how to use this flexibility to
measure separate error rates for distinct sets of gates, which includes tasks such as measuring an
average cnot error rate.

With quantum processors incorporating 5 – 20 qubits
now commonplace [1–12], and 50+ qubits expected soon
[13–15], efficient, holistic benchmarks are becoming in-
creasingly important. Isolated qubits or coupled pairs
can be studied in detail with tomographic methods [16–
20], but the required resources scale exponentially with
qubit number n, making these techniques infeasible for
n ≫ 2 qubits. And while an entire device could be
characterized two qubits at a time, this often results in
over-optimistic estimates of device performance that ig-
nore crosstalk and collective dephasing effects. What is
needed instead is a family of holistic benchmarks that
quantify the performance of a device as a whole. Ran-
domized benchmarking (RB) methods [21–29] avoid the
specific scaling problems that afflict tomography – in RB,
both the number of experiments [30] and the complexity
of the data analysis [25] are independent of n – but in-
troduce a new scaling problem in the form of gate com-
pilation.

Although a quantum processor’s native gates typically
include only a few one- and two-qubit operations, the
“gates” benchmarked by RB are elements of an expo-
nentially large n-qubit group 2-design (e.g., the Clifford
group). These gates must be compiled into the native
gate set [31, 32]. As the number of qubits increases, the
circuit depth and infidelity of these compiled group ele-
ments grow rapidly, rendering current RB protocols im-
practical for relatively small n, even with state-of-the-art
gates. The industry-standard protocol laid out by Mage-

san et al. [24, 25] – which we will refer to as Clifford
randomized benchmarking (CRB) – has been widely used
to benchmark [33–44] and calibrate [45, 46] both individ-
ual qubits and pairs of qubits, but we are aware of just
one reported application to three qubits [47], and none
to four or more.

Another consequence of compilation is that, instead
of quantifying native gate performance, CRB measures
the error per compiled group element. Although this is
sometimes translated into a native gate error rate, e.g.,
by dividing it by the average circuit size of a compiled
Clifford [42–44], this is ad hoc and not always reliable
[48]. Moreover, error rates obtained this way are hard

FIG. 1. A cartoon illustrating the circuits used in Clifford
RB and the streamlined direct RB protocol that we propose.
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to interpret for n ≫ 1 CRB, where error rates can vary
widely between native gates.

In this Letter we propose and demonstrate direct ran-
domized benchmarking (DRB), an RB protocol that di-
rectly benchmarks the native gates of a device. Like
CRB, our DRB protocol utilizes random circuits of vari-
able length, but these circuits consist of the native gates
of the device, rather than compiled Clifford operations
(see Fig. 1). Our protocol is not infinitely scalable, but
the simplified structure enables DRB to be successfully
implemented on significantly more qubits than CRB.
Moreover, DRB preserves the core simplicity of CRB:
it estimates an error rate from an exponential decay.

We anticipate that DRB will be an important tool for
characterizing current multi-qubit devices. For this rea-
son, this Letter focuses on the practical applications of
DRB. We present experiments on 2 – 5 qubits and simula-
tions on 2 – 10+ qubits. These examples show that DRB
works, demonstrate how our protocol improves on cur-
rent methods, and show that DRB can be implemented
on significantly more than two qubits on current devices.
We follow these demonstrations with arguments for why
DRB is broadly reliable, but this Letter does not contain
a comprehensive theory for DRB – that will be presented
in a series of future papers.

Direct randomized benchmarking – DRB is a pro-
tocol to directly benchmark the native gates in a device.
There is flexibility in defining a device’s “native gates”.
For DRB we only require that they generate the n-qubit
Clifford group Cn [49]. Normally, they will be all the
n-qubit Clifford operations that can be implemented by
depth-1 circuits, e.g., by parallel 1- and 2-qubit gates (see
Fig. 1). We call these circuit layers or (n-qubit) native
gates.

Just as CRB uses sequences of random Cliffords, DRB
uses sequences of random circuit layers. But whereas the
Cliffords in CRB are supposed to be uniformly random,
DRB allows the circuit layers to be sampled according to
a user-specified probability distribution Ω. Many distri-
butions are permissible, but, to ensure reliability, Ω must
have support on a subset of the gates that generates Cn
and Ω-random circuits must quickly spread errors (see
later).

The n-qubit DRB protocol is defined as follows (note
that all operations are assumed to be imperfect):

1. For a range of lengths m ≥ 0, repeat the following
km ≫ 1 times:

1.1. Sample a uniformly random n-qubit stabilizer
state ∣ψ⟩.

1.2. Sample an m-layer circuit Um, where each
layer is drawn independently from some user-
specified distribution Ω over all n-qubit native
gates.

1.3. Repeat the following N ≥ 1 times:

1.3.1 Initialize the qubits in ∣0⟩⊗n.

1.3.2 Implement a circuit to map ∣0⟩⊗n → ∣ψ⟩.
1.3.3 Implement the sampled Um circuit.

1.3.4 Implement a circuit that maps Um∣ψ⟩ to
a known computational basis state ∣s⟩.

1.3.5 Measure all n qubits and record whether
the outcome is s (success) or not (failure).

2. Calculate the average probability of success Pm at
each lengthm, averaged over the km randomly sam-
pled circuits and the N trials for each circuit.

3. Fit Pm to Pm = A+Bpm, where A, B and p are fit
parameters.

4. The Ω-averaged DRB error rate of the native gates
is r = (4n − 1)(1 − p)/4n.

The n-dependent rescaling used above is different from
that in common usage [23–25]. Using our convention, r
corresponds to the probability of an error when the errors
are stochastic (see later). This is particularly convenient
when varying n.

DRB is similar to the earliest implementations of RB.
Both the 1-qubit RB experiments of Knill et al. [23] and
the 3-qubit experiments of Ryan et al. [50] utilize random
sequences of group generators, and so are specific exam-
ples of DRB without the stabilizer state preparation step
and flexible sampling. These additional features, how-
ever, are essential to DRB: they make DRB provably
reliable under broad conditions, and allow us to sepa-
rate the error rate into contributions from distinct sets
of gates.

What DRB measures – To interpret DRB results it
is important to understand what DRB measures. As-
sume that the gate errors are stochastic, which can be
enforced to a good approximation by, e.g., Pauli-frame
randomization [51–53] or by following each layer in DRB
with a random n-qubit Pauli gate. Then, whenever Ω-
random circuits quickly increase the weight of errors, r is
a good estimate of the probability that an error happens
on a Ω-average native gate. That is, r ≈ εΩ ≡ ∑iΩ(Gi)εi,
where εi is the probability of an error on the n-qubit
native gate Gi. Later, we derive this relationship.

Because r depends on the sampling distribution, they
should be reported together. A similar, but hidden vari-
ability also exists in CRB – the CRB r depends on the
Clifford compiler. This compiler-dependence in CRB is
inconvenient, as the properties of multi-qubit Clifford
compilers are difficult to control. In contrast, because
we directly choose Ω, we can control how often each gate
appears in the random circuits, to estimate error rates of
particular interest.

Experiments on 2 – 5 qubits – To demonstrate that
DRB is useful and behaves correctly on current multi-
qubit devices, we used it to benchmark 2 – 5 qubit subsets
of the publicly accessible IBMQX5 [1, 2]. The IBMQX5
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FIG. 2. Experimental 2 – 5 qubit DRB on IBMQX5. A.
Success probability decays. The points are average success
probabilities Pm, and the violin plots show the distributions of
the success probabilities at each length over circuits (there are
28 circuits per length). The curves are obtained from fitting
to Pm = A+Bp

m, and r = (4n
− 1)(1− p)/4n. B. A schematic

of IBMQX5. The colors match those in A and correspond
to the additional qubits/cnots added from n → n + 1 qubit
DRB (see also D). C. Observed r versus n, and predictions
from 1- and 2-qubit CRB calibration data. D. Estimates of
the average cnot error rate in n-qubit circuits, obtained by
comparing the data in A with additional DRB data that used
circuits with fewer cnots per layer.

native gates comprise cnots and arbitrary 1-qubit gates
[2, 54]; we benchmarked a set of n-qubit gates consisting
of parallel applications of all directly available cnots and
all 1-qubit Clifford gates.

Fig. 2 summarizes our results. Fig. 2 A demonstrates
that DRB was successful on 2 – 5 qubits: an exponen-
tial decay is observed and r is estimated with reasonable
precision (bootstrapped 2σ uncertainties are shown). To
our knowledge, this is the largest number of qubits holis-
tically benchmarked to date, which was made possible
by the streamlined nature of DRB (see Fig. 1). To in-
terpret these results it is necessary to specify the circuit
sampling. Each layer was sampled as follows: with prob-
ability pcnot we uniformly choose one of the cnots and
add it to the sampled layer; for all n or n − 2 remaining
qubits we independently and uniformly sample a 1-qubit
gate and add it to the layer. For the data in Fig. 2 A,
pcnot = 0.75. We also implemented experiments with
pcnot = 0.25; see the Supplemental Material [55] for this
data and further experimental details.

Using this sampling, the average number of cnots
per layer is pcnot, independent of n. Therefore r would
vary little with n if cnot errors dominate, the error
rates are reasonably uniform over the cnots, and n-qubit
benchmarks are predictive of benchmarks on more than n
qubits. Instead, the observed r increases quickly with n.
This is quantified in Fig. 2 C, where we compare each ob-

served r to a prediction rcal obtained from the IBMQX5
CRB calibration data (1-qubit error rates from simulta-
neous 1-qubit CRB [2, 56, 57] and cnot error rates from
CRB on isolated pairs [56]). These predictions are calcu-
lated both using r ≈ εΩ and via a DRB simulation using a
crosstalk-free error model that is consistent with the cal-
ibration data. Both methods agree, confirming that the
increase in r with n is not due to a failure of DRB. For
n = 2, rcal and r are similar, demonstrating that n-qubit
DRB and CRB are consistent. But, as n increases, r di-
verges from rcal. This shows that the effective error rates
of the 1-qubit and/or 2-qubit gates in the device change
as we implement circuits over more qubits, demonstrat-
ing that n > 2-qubit DRB can detect errors that are not
predicted by 1- and 2-qubit CRB (calibration data) or
2-qubit DRB (our data). This highlights the value of
holistic benchmarking for multi-qubit devices.

Using the data from Fig. 2 A (pcnot = 0.75) alongside
additional data with pcnot = 0.25 sampling [58], we can
estimate the average cnot error rate in n-qubit circuits.
For each n and using r ≈ ∑iΩ(Gi)εi, we have r⃗ ≈ Mε⃗
where: r⃗ = (r0.75, r0.25) with r0.75 (resp., r0.25) the r ob-
tained with pcnot = 0.75 (resp., pcnot = 0.25) sampling;
ε⃗ = (εA, εB) with εA (resp., εB) the average error rate
of those n-qubit gates containing one cnot in parallel
with 1-qubit gates on the other qubits (resp., n parallel
1-qubit gates); M = 1

4
( 3 1

1 3 ). Therefore, εA and εB can
be estimated using ε⃗ =M−1r⃗, and so – by estimating the
average 1-qubit gate error rate from εB and removing
this contribution from εA – we can estimate the mean
cnot error rate versus n. Estimates are given in Fig. 2
D. For two qubits, our estimate of the cnot error rate
is similar to the prediction from the calibration data, so
our methodology seems consistent with CRB techniques.
In contrast, our results show that cnots perform sub-
stantially worse in n > 2 qubit circuits than in 2-qubit
circuits. This is likely due to cnot crosstalk, i.e., cnots
affect “spectator” qubits.

FIG. 3. Simulation of DRB and CRB for 2 – 14 qubits with
a simple error model. The n-qubit DRB error rate is r ≈
n × 0.15%, consistent with the simulated sampling-averaged
native gate error rate εΩ.
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DRB simulations – We have shown that DRB works on
current multi-qubit devices, and so we now demonstrate
with simulations that r ≈ εΩ ≡ ∑iΩ(Gi)εi. Assume n
qubits with native gates consisting of parallel cnot, idle
I, Hadamard H and phase P gates (P ∣x⟩ = ix∣x⟩), and
all-to-all connectivity. We model gate errors by assum-
ing that after each cnot (resp., 1-qubit gate) the qubits
involved in the gate are independently, with probability
0.25% (resp., 0.05%), subject to a random σx, σy or σz er-
ror. So the cnot error rate is ≈ 0.5%. We simulated DRB
with a sampling distribution defined by randomly pairing
up the qubits, applying a cnot to a pair with probability
p̃cnot = 0.5, and applying uniformly random 1-qubit gates
(H, P or I) to all qubits that do not have a cnot acting
on them. Fig. 3 shows simulated 2 – 14 qubit DRB and
CRB data. DRB has succeeded: the decay is exponential
and r ≈ εΩ = 1−(0.5×0.99752+0.5×0.99952)n

2 ≈ n×0.15%.
In contrast, the CRB r grows rapidly with n – for only
4-qubit CRB r ≈ 10% – and CRB fails for n > 12, demon-
strating that DRB can be implemented on more qubits
than CRB. Moreover, the CRB error rates r rescaled to
rrcrb = 1−(1−r)1/α [42–44, 48], with α the average com-
piled Clifford circuit-depth or cnot-count, are not simple
functions of the native gate error rates (see Fig. 3).

This example is illustrative, but simplistic. So, in the
Supplemental Material we present additional simulations
with large, non-uniform cnot error rates, and limited
qubit connectivity. We also simulate the cnot error rate
estimation method used on the IBMQX5 data, validating
the technique.

DRB theory – We now provide a theory for DRB of
gates with Pauli-stochastic errors. DRB circuits consist
of preparing a uniformly random n-qubit stabilizer state
ψ, a circuit Um = Gsm⋯Gs1 with m layers Gi sampled
according to Ω, and a stabilizer measurement projecting
onto Um∣ψ⟩. For now, assume that the stabilizer state
preparation and measurement (SSPAM) are perfect. In
the stochastic error model, each time Um is applied there
is some faulty implementation, Ũm = PsmGsm⋯Ps1Gs1 ,
with Psi some Pauli error or the identity. DRB aims to
capture the rate that these Psi deviate from the iden-
tity. Because ψ is a stabilizer state, the measurement
will register success iff one of the following holds:

(S1) No errors occur in Ũm, i.e., all Pi = 1.

(S2) 2+ errors occur in Ũm, but when they propagate
through the circuit they cancel, i.e., multiple Pi ≠ 1
but Ũm = ikUm (for some k = 0,1,2,3).

(S3) 1+ errors occur in Ũm that do not cancel, but they
are nonetheless unobserved by the stabilizer mea-
surement, i.e., Ũm ≠ ikUm but Ũm∣ψ⟩ = ilUm∣ψ⟩.

The DRB average success probability Pm is obtained by
averaging P (Um, ψ) = ∣⟨ψ∣U†

mŨm∣ψ⟩∣2 over the possible
Pauli errors, ψ and Um. We may then write Pm = s1 +

(1 − s1)(s2 + (1 − s2)s3), where s1 is the probability of
S1, i.e., no errors, s2 is the probability of S2 conditioned
on 1+ errors occurring, and s3 is the probability of S3
conditioned on 1+ errors occurring and the errors not
canceling. Because εΩ is the Ω-averaged error rate per
layer, s1 = (1−εΩ)m. A uniformly random stabilizer state
ψ is an eigenstate of any Pauli error with probability
(2n − 1)/(4n − 1), so s3 = (2n − 1)/(4n − 1) ≈ 2−n. This is
one of the motivations for the state preparation step in
DRB.

In order to understand the effect of s2 on Pm, we con-
sider two regimes: small n (≲ 3 qubits) and not-so-small
n (≳ 3). In both regimes, we expect Pauli errors to oc-
curring at most once every several layers and to be low-
weight, with support on only a few qubits. In the not-so-
small n regime, errors propagating through a sequence
of one- and two-qubit gates are likely to quickly increase
in weight [59–61] (due to the demands we made of Ω
earlier). Subsequent errors are therefore very unlikely to
cause error cancellation. If each layer is a uniformly ran-
dom Clifford (as in uncompiled CRB), any Pauli error is
randomized to one of the 4n − 1 possible n-qubit Pauli
errors at each step. So the probability that another er-
ror cancels with an earlier error is ≃ 1/4n, implying that
s2 ≲ 1/4n. In DRB, we expect error cancellation at a
rate only slightly above this. Therefore, s2 contributes
negligibly to Pm, so Pm ≈ 2n + (1 − 2n)(1 − εΩ)m. This
is an exponential with decay rate εΩ. Verifying this er-
ror scrambling process for a given sampling distribution,
Ω, is computationally efficient in qubit number. Distri-
butions that do not scramble the errors quickly (e.g., if
2-qubit gates are rare) can yield decays that are not sim-
ple exponentials. These should be avoided.

For small n, the probability of cancellation (s2) is not
negligible for any distribution. But because n is small, we
only need a few random circuit layers of Clifford-group
generators to implement approximate Clifford twirling,
so Pm may be computed using the resulting effective de-
polarizing channel. Such channels are well-known to lead
to exponential decays [25]. However, s2 (a function of m)
now contributes significantly to the DRB decay constant
p, so p ≉ 1 − εΩ. This motivates r = (4n − 1)(1 − p)/4n,
which removes the unwanted s2 contribution in 1−p. Let
each layer be followed by a depolarizing map Dλ where
Dλ[ρ] = λρ + (1 − λ)1/2n. Then Pm = (1 − 2−n)λm + 2−n,
but the error rate of Dλ is ε = (4n − 1)(1 − λ)/4n. Of
course, in the large-n limit, ε→ 1 − λ.

Above, we assumed perfect SSPAM which is unrealis-
tic. The SSPAM operations are almost m-independent,
and so errors in SSPAM are almost entirely absorbed into
A and B in Pm = A+Bpm, as normal in RB [24, 25]. The
only m-dependent impact is from correlations in the sta-
bilizer state that is prepared and measured – they are
perfectly correlated (resp., uncorrelated) at m = 0 (resp.,
m → ∞). This causes an inconsequentially small ten-
dency to over-estimate the gate error rate – because SS-
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PAM contributes an error of 1 − avgi[(1 − εi,sspam)2] at
m = 0 but a smaller error of 1 − (avgi[1 − εi,sspam])2 at
m→∞, where εi,sspam is the error in creating or measur-
ing the ith stabilizer state.

DRB remains effective with coherent errors – with any
1-qubit gates that generate the 1-qubit Clifford group, in-
dependently random 1-qubit gates on each qubit are suf-
ficient to quickly twirl coherent errors to Pauli-stochastic
errors, implying that errors can only coherently combine
between a few layers in a DRB circuit (in contrast to the
uncontrolled coherent addition within a compiled Clif-
ford gate in CRB). But linking r to a formal notion of
gate error rate is subtler with coherent errors, in direct
analogy with CRB [62–64], as will be discussed in future
work.

Conclusions – Benchmarking methods for multi-qubit
systems are essential for assessing the performance of cur-
rent and near-term quantum processors. But currently
there are no reliable methods that can be easily and rou-
tinely applied to more than two qubits with current de-
vice performance. In this Letter we have introduced and
demonstrated direct randomized benchmarking (DRB), a
method that streamlines the industry-standard Clifford
randomized benchmarking (CRB) technique [24, 25] so
that it can be applied to more qubits. DRB retains the
core simplicity of CRB, our protocol directly measures
the quantities of most interest – the error rates of the
native gates in a device – and it is user-configurable,
allowing a variety of important error rates to be esti-
mated. Our experimental demonstrations were on 2 – 5
qubits, and, using a publicly accessible device [1, 2], set a
record for the number of qubits holistically benchmarked.
The tools we used are available as open-source code [65],
and support any device connectivity. So, we anticipate
that 5 – 10+ qubits will soon be benchmarked with our
protocol, providing important insights into state-of-the-
art device performance. Finally, the techniques of DRB
can also be applied to extend and improve the full suite
of RB methods [26, 27, 57, 66–74], and varied-sampling
DRB provides an alternative to both interleaved CRB
[74] and “interleaved DRB” for estimating individual er-
ror rates, demonstrating the broad applicability and im-
pact of DRB.
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