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Inelastic neutron scattering recently confirmed the theoretical prediction of a ↑↑↓↓-magnetic state
along the legs of quasi-one-dimensional (quasi-1D) iron-based ladders in the orbital-selective Mott
phase (OSMP). We show here that electron-doping of the OSMP induces a whole class of novel
block-states with a variety of periodicities beyond the previously reported π/2 pattern. We discuss
the magnetic phase diagram of the OSMP regime that could be tested by neutrons once appropriate
quasi-1D quantum materials with the appropriate dopings are identified.

Introduction. Competing interactions in strongly cor-
related electronic systems can induce novel and exotic
effects. For example, in the iron-based superconductors
[1–4] charge, spin, and orbital degrees of freedom com-
bine phenomena known from cuprates with those found
in manganites. Prominent among these novel effects is
the orbital-selective Mott phase (OSMP) [5], where inter-
actions acting on a multi-orbital Fermi surface cause the
selective localization of electrons on one of the orbitals.
As a consequence, the system is in a mixed state with co-
existing metallic and Mott-insulating bands [Fig. 1(a)].
Since the theoretical studies of the OSMP require the
treatment of challenging multi-orbital models most of the
investigations thus far were performed with approxima-
tions such as the the slave-particle mean field method [7–
9, 43] or dynamical mean-field theory [10–12]. Here, we
present unambiguous numerical evidence of the OSMP
within low-dimensional multi-orbital Hubbard models,
unveiling a variety of new phases.

The magnetic ordering associated with the OSMP
could be significantly different from that observed in
cuprates. The latter are described by single-band Hamil-
tonians and the parent compounds order in a staggered
antiferromagnetic fashion. However, recent inelastic neu-
tron scattering (INS) experiments [13] on quasi-1D iron-
based materials of the 123 family (AFe2X3; A alkali
metals, X=Se,S chalcogenides) unveiled exotic π/2-block
magnetic states where spins form antiferromagnetically
(AFM) coupled ferromagnetic (FM) islands, in a ↑↑↓↓-
pattern [Fig. 1(b)]. Similar patterns were also re-
ported in two dimensions with iron vacancies, such as in
Rb0.89Fe1.58Se2 [14] and K0.8Fe1.6Se2 [8, 15–17]. For the
aforementioned compounds the OSMP state is believed

to be relevant [8, 13, 18–20].
Recent theoretical investigations [21, 22] showed that

a multi-orbital Hubbard model in the OSMP state prop-
erly describes the INS spin spectra of π/2-block state
of powder BaFe2Se3 [13]. However, the origin of block
magnetism and its relation to the OSMP is an intrigu-
ing and generic question that has been barely explored.
We show that the block-OSMP magnetism can develop
in various shapes and sizes depending on the electron-
doping, far beyond the previously reported π/2-pattern.
Moreover, here we develop effective Hamiltonians for the
OSMP which allows for an intuitive understanding of the
origin of block magnetism. Our simplified, yet accurate,
model allows for reliable numerical investigations of the
OSMP and predicts the behavior of the maximum of the
spin structure factor in electron-doped OMSP.

Model. Our conclusions are based on extensive sim-
ulations of two- and three-orbital models in chain and
ladder geometries for a variety of model parameters. For
clarity, consider first the two-orbital 1D Hubbard model,

HH = −
∑

γ,γ′,`,σ

tγγ′

(
c†γ,`,σcγ′,`+1,σ + H.c.

)
+ ∆

∑
`

n1,`

+ U
∑
γ,`

nγ,`,↑nγ,`,↓ + (U − 5JH/2)
∑
`

n0,`n1,`

− 2JH
∑
`

S0,` · S1,` + JH
∑
`

(
P †0,`P1,` + H.c.

)
, (1)

where c†γ,`,σ creates an electron with spin σ = {↑, ↓} at
orbital γ = {0, 1} and site ` = {1, . . . , L}. tγγ′ denotes a
diagonal hopping amplitude matrix in orbital space γ,
with t00 = −0.5 and t11 = −0.15 in eV units. The
crystal-field splitting is ∆ = 0.8 eV (kinetic-energy band-
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width is W = 2.1 eV). The local (γ, `) orbital-resolved
particle density is nγ,` =

∑
σ nγ,`,σ, Sγ,` is the local spin,

and Pγ,` = cγ,`,↑cγ,`,↓ is the pair-hopping operator. The
global filling is n = N/L, where N is the number of elec-
trons and L the system size. U is the repulsive Hubbard
interaction, while JH is the Hund exchange, fixed here to
JH = U/4 [21–28]. All results are obtained with the den-
sity matrix renormalization group method [29–33] with
truncation errors smaller than ∼ 10−7. Open boundary
conditions were assumed.

Figure 1. (Color online) Schematic representation of (a) the
orbital-selective Mott phase and (b) π/2-block spin state. (c)
Interaction U and (d) filling n dependence of the total mag-
netic moment 〈S2

` 〉 and orbital-resolved occupation numbers
nγ of the two-orbital Hubbard model Eq. (1), using L = 48
sites. In (d), the black dashed line represents the largest pos-
sible magnetic moment S2

max. (e) Momentum distribution
function n0(q) of the γ = 0 orbital. Points indicate q0der, the
position of the maximum in dn0(q)/dq. (f) n dependence of
the position of the maximum of the spin structure factor qSmax.
Block-OSMP is denoted as a colored area. In the same panel
we also present the position of the orbital γ = 0 Fermi-vector
calculated via 2k0F = πn0 and via 2q0der.

Although the Hamiltonian Eq. (1) appears complex, it
represents a generic SU(2) symmetric multiorbital sys-
tem. As long as we are in the block-OSMP state, our
results are not sensitive to details of the parameter sets:
for example, in the Supplementary Material [34] we show
that the same conclusions are drawn from a system with
or without interorbital hybridization and with two or
three orbitals. Ladder geometries also lead to similar
findings. We also observe block states in the effective
Kondo-Heisenberg model. Our results are thus generic

and intrinsic of multi-orbital systems in the block-OSMP.

Orbital-selective Mott phase. Figures 1(c-d) present
the orbital-resolved occupation numbers nγ and the to-
tal magnetic moment per site squared 〈S2

` 〉 = S`(S` + 1).
As expected in the OSMP, increasing the interaction U
“locks” the occupation number of one of the orbitals to
n1 = 1. This behavior is observed in the 2 < n < 3 re-
gion, yielding a remaining orbital γ = 0 only fractionally
occupied. Simultaneously, 〈S2

` 〉 is almost fully saturated
to its maximal value (given by the total filling) when
n1 = 1. Charge fluctuations δn2γ = 〈n2γ〉 − 〈nγ〉2 [27, 34]
indicate that the number of doublons is highly suppressed
on the single-occupied orbital, different from the fraction-
ally occupied orbital γ = 0 where δn20 6= 0 suggests metal-
lic character. The results above, and the orbital-resolved
density-of-states (DOS) analysis [34], are consistent with
OSMP physics in a wide range 2 < n < 3. As in previous
investigations [27], our block-OSMP system is in an over-
all metallic state for all considered fillings, albeit with a
highly reduced Fermi-level DOS. It is currently unknown
if the latter approximates a pseudogap or rather a weak
insulator, and more detailed analysis is needed.

Block magnetism. Previous efforts [21, 22] showed
that the OSMP can display exotic magnetic properties,
such as AFM coupled FM islands (the spin-block phase).
Here, one of our main results is that the magnetic pat-
tern of the block-OSMP is not limited to the π/2-phase,
but remarkably the OSMP can support a variety of spin
patterns previously unknown. Figure 2(a) illustrates the
filling n dependence of the total spin structure factor S(q)
[35]. Several conclusions can be obtained from the dis-
played results at U = W : (i) below half-filling, n < 2,
the (weak) maximum of S(q) at q = π indicates a param-
agnetic state with short-range spin staggered tendencies.
(ii) Entering the OSMP phase, 2 < n < 3, robust correla-
tions develop with well-defined peaks in S(q) at qSmax [see
Fig. 3(a,b) and [34] for finite-size scaling]. In this region
qSmax strongly depends on n, and decreases as n increases
[see also Fig. 1(f)]. (iii) For n > 3 paramagnetism is re-
covered with a (weak) maximum at q = π [36]. Although
the strong spin correlations unveiled here resemble long-
range order, it is expected that in 1D eventually they
would decay slowly as a power law. However, weak cou-
plings perpendicular to the chains/ladders should stabi-
lize the unveiled orders into long-range patterns with the
same local block order as reported here.

Consider now the real-space correlation functions
〈S` · SL/2〉 [Fig. 2(a), top]. Starting with n = 2, the
structure factor has a “standard” π-AFM staggered spin
pattern, common of Mott insulators. However, at n ' 2.3
an unexpected novel spin pattern emerges involving 1-
and 2-sites FM islands of the form ↑↑↓↑↓↓↑↓. At n = 2.5
the previously known AFM coupled FM blocks of two
spins, ↑↑↓↓, is stabilized. Increasing further the electron
doping, the magnetic islands continue growing in size. On
the considered L = 48 lattice, the largest new pattern ob-
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Figure 2. (Color online) (a) Static structure factor S(q) for
various fillings n at fixed U = W , for the two-orbital Hub-
bard (lines) and generalized Kondo-Heisenberg (points) mod-
els, both using L = 48 sites (L = 72 for n = 2.75, see text for
details). Real-space correlation functions 〈S` · SL/2〉 of the
two-orbital Hubbard model and sketches of the spin align-
ment are also presented at the top. (b) Interaction vs filling
magnetic phase diagram of the generalized Kondo-Heisenberg
model on L = 48 sites. The dashed-shaded area represents
the region where the mapping is not valid.

served contains FM blocks with three spins (↑↑↑↓↓↓) for
n ' 2.66. Increasing n further, S(q) suddenly reaches a
maximum again at qSmax = π. As shown later, for large
enough L, larger FM islands were observed [37], albeit in
narrower regions of the parameter space.

Effective model. To better understand these surpris-
ingly rich new magnetic structures, let us consider an
effective Hamiltonian. Because in the OSMP the double
occupancy of the localized orbital γ = 1 with n1 = 1
is highly suppressed, it is natural to restrict - using the
Schrieffer-Wolff transformation [38] - the Hilbert space of
Eq. (1) to the subspace with strictly one electron per site
at γ = 1 orbital. The formal derivation is in [34], and
here we just present the final result, i.e., the generalized
Kondo-Heisenberg model defined as,

HK = t00
∑
`,σ

(
c†0,`,σc0,`+1,σ + H.c.

)
+ U

∑
`

n0,`,↑n0,`,↓

+ K
∑
`

S1,` · S1,`+1 − 2JH
∑
`

S0,` · S1,` , (2)

Figure 3. (Color online) (a,b) Finite-size scaling of (a) the
spin structure factor maximum S(qSmax) and (b) position of
qSmax, calculated for U/W = 1 using the generalized Kondo-
Heisenberg model. Arrows in (b) represent the L → ∞ limit
πn0. (c-f) U dependence of S(q) for n = 2.50 and 2.66.
Lines (circles) represent results using the two-orbital Hubbard
model (generalized Kondo-Heisenberg model) and L = 48
sites. Dashed horizontal lines represent 2kF = πn. (g) U de-
pendence of qSmax for the two-orbital Hubbard model (lines)
and generalized Kondo-Heisenberg model (circles) at fillings
n = 2.33 , 2.50, and 2.66. The dashed-shaded area represents
the region where the mapping is not valid.

with K = 4t211/U . The electronic filling of the effec-
tive Hamiltonian is either nK = n − 1 or nK = 3 − n
due to the particle-hole symmetry of Eq. (2). We tested
the accuracy of Eq. (2) by comparing results for S(q) in
a wide range of parameters. From Figs. 2(a), 3, and
4(a), clearly the magnetic properties of the multi-orbital
Hamiltonian in the block-OSMP are accurately repro-
duced by the generalized Kondo-Heisenberg model [39].
Furthermore, due to the small Hilbert space of the latter,
we can accurately study much larger systems and stabi-



4

lize larger blocks. In Fig. 2(a) we show results for L = 72,
U/W = 1.02, JH/U = 0.27, and nK = 0.25 which exhibit
the block of 4-spins [40].

For U = 0 (and K = 0) the effective Hamiltonian re-
sembles the widely-studied Kondo-Heisenberg (Kondo)
model. In this framework, we can understand intu-
itively the origin of the magnetic blocks [41–43]. At half-
filling nK = 1 and for a strong Kondo (Hund) coupling,
JH � K , t00, the γ = 0 electrons form local Kondo in-
terorbital triplets with localized spins. Increasing the
electrons’ mobility, t00, leads to the double-exchange FM
ordering [44]. On the other hand, when t00 � JH ,K
one can observe (short-range) features in the spin spec-
trum upon doping at twice the Fermi vector (2kF) of
the itinerant orbitals, Fig. 3(c-d). In the OSMP, when
JH ∼ K ∼ O(t00), the 2kF instability of itinerant orbitals
is amplified leading to spin (quasi-)long-range order with
maximum at S(2kF) [Fig. 3(e-f)]. As a consequence, com-
petition of double- and super-exchange mechanisms leads
to the formation of block magnetic islands. We tested
the above “2kF prediction” of the maximum of the spin
structure factor by comparing qSmax with the U → 0 limit
in 1D, i.e., 2k0F = πn0. Also, we calculated the Fermi
vector position directly from the momentum distribu-
tion function nγ(q) via the maximum q0der of dn0(q)/dq
[Fig. 1(e) and [34]]. It is evident from Fig. 1(c) that the
block-magnetism follows the Fermi vector of the γ = 0
orbital [45]. It is important to remark that the above
“2kF-stabilization” is an emergent phenomena unique of
multi-orbital systems. Doping the single-band Hubbard
model leads only to short-ranged ordered spin correla-
tions, retaining their π-AFM character. This is strikingly
different from the behavior reported here in multi-orbital
models because the Hund coupling between subsystems
induces novel magnetic block-states.

As discussed above, the effective Hamiltonian Eq. (2)
accurately describes the OSMP magnetic phases, and is
in good agreement with the rich island-physics of Kondo-
lattice Hamiltonians unveiled before [41, 48–51]. This
allows us to create a detailed magnetic phase diagram
of the effective model. In Fig. 2(b) we present the n–
U dependence of qSmax using L = 48 sites: (i) at U <
W/2, where the mapping should not work, the system
is paramagnetic; (ii) at n < 2.5 for all considered U ’s
and for U ' W at n <∼ 2.7 we found the novel stable
blocks of various sizes, depending on kF ∝ n; (iii) finally
at U � W the system is ferromagnetic for all 2 < n < 3
[see also Fig. 3(g)]. Furthermore, in between the FM
and block phases we observed a narrow incommensurate
magnetic region which will be studied in the future.

Ladder geometry. To confirm the robustness of our
findings and to bring our results closer to experimental
compounds, such as AFe2X3 [13, 18, 19, 46, 47, 52–54],
consider now two-orbital ladder systems. The kinetic
part of the Hamiltonian is defined with isotropic hop-

pings t
‖
γγ′ = t⊥γγ′ = tγγ′ and ∆ = 1.6 eV (kinetic energy

Figure 4. (Color online) (a) n dependence of S(q‖, 0) (bond-
ing component) at U = WL using the two-orbital Hubbard
ladder (lines) and the generalized Kondo-Heisenberg (points)
models, both on L = 48 sites (24 rungs). The inset depicts
the antibonding component S(q‖, π). Schematics of the spin
configurations are also presented. (b) Filling n dependence

of q
S‖
max, 2k

0‖
F = 2πn0, and 2q

0‖
der. Block-OSMP appears as a

colored area. (c) Momentum distribution function n0(q‖, 0)
of the γ = 0 orbital in the bonding q⊥ = 0 sector. The legend
is the same as in (a).

bandwidth WL = 3.55 eV), while the remaining interac-
tions are as in Eq. (1). Figure 4(a) presents the bonding
q⊥ = 0 component of the spin structure factor S(q‖, 0) for
U = WL. Consistent with the 1D predictions, the maxi-
mum of S(q‖, 0) strongly depends on filling. At n = 2.5
the system is in a π-AFM state, and with increasing fill-
ing spin blocks start to develop. Interestingly, our results
indicate that as n → 2.5 the legs are FM aligned. How-
ever, as n → 3 a novel AFM ordering between the legs
develop, while the FM islands involve three spins [55].
The latter may arise from competing double-exchange-
FM vs AFM tendencies coming from the localized spins
and Fermi instability kF, namely the energy of the large
FM blocks as n → 3 is reduced by the rung AFM ar-
rangement. Thus, we speculate that the ladder geometry
can stabilize even larger magnetic blocks due to the AFM
ordering between legs.

Consider now the filling dependence of the maximum

of the ladder spin structure factor q
S‖
max. As in 1D, q

S‖
max

follows the Fermi vector q
0‖
der estimated from the momen-

tum distribution function [Fig. 4(b)]. Although the re-
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gion where the block magnetism is observed, 2.5 < n < 3,
is smaller compared with chains, this can be explained
considering the ladder U → 0 limit prediction of Fermi

vectors. In this case, for an isotropic ladder (t
‖
00 = t⊥00)

and n > 1.5 + 1, the itinerant orbital Fermi vector is

2k
0‖
F = 2πn0 (as opposed to 2k0F = πn0 for a chain).

Figures 4(b,c) indicate excellent agreement between 2k
0‖
F

and the numerically evaluated 2q
0‖
der [dn(q‖, 0)/dq maxi-

mum] in the OSMP. Furthermore, as in chains, the block-

magnetism follows the 2k
0‖
F prediction.

Conclusions. We have shown that the multi-orbital
Hubbard model in the OSMP regime supports spin-block
magnetism of various novel sizes and shapes, depending
on filling and lattice geometry. Moreover, we also derived
an effective OSMP Hamiltonian, the generalized Kondo-
Heisenberg model, which describes all magnetic phases
accurately. The observed spin structures are related to
the 2kF of the metallic electron bands, but spin blocks
are much more sharply defined than they would be in the
mere sinusoidal structure arising from a weak-coupling
Fermi-surface instability [see real-space spin correlations
in Fig. 2(a) top] . We believe that the strongly correlated
nature of the localized spins, due to its narrow bandwidth
[25], enhances the 2kF instability in a manner only possi-
ble in OSMP regimes. Our predictions could be relevant
within the 123 families of iron-based materials and can
be confirmed by INS experiments. But we remark that
our results are generic and could apply to any quasi-1D
quantum material in an OSMP regime.
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