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We investigate the electronic structure of a twisted multilayer graphene system forming a moiré
pattern. We consider small twist angles separating the graphene sheets and develop a low-energy
theory to describe the coupling of Dirac Bloch states close to the K point in each individual plane.
Extending beyond the bilayer case, we show that, when the ratio of the consecutive twist angles
is rational, a periodicity emerges in quasimomentum space with moiré Bloch bands even when the
system does not exhibit a crystalline lattice structure in real space. For a trilayer geometry, we find
flat bands in the spectrum at certain rotation angles. Performing a symmetry analysis of the band
model for the trilayer, we prove that the system is a perfect metal in the sense that it is gapless
at all energies. This striking result originates from the three Dirac cones which can only gap in
pairs and produce bands with an infinite connectivity. It also holds quite generally for multilayer
graphene with an odd number of planes under the condition of C2zT symmetry.

Two parallel layers of graphene twisted by a small an-
gle exhibit a moiré pattern [1], with a lattice periodic-
ity much larger than the graphene unit cell, and non-
trivial electronic properties [2], such as band-flattening
at certain magic angles [3–8]. Flat bands present a re-
duced kinetic energy, thereby artificially boosting elec-
tron correlations [9]. The recent discovery of correlated
insulating phases at half-filling and possibly unconven-
tional superconductivity [10–13] have unveiled bilayer
moiré graphene as a tunable device for exploring novel
correlated states, at zero or finite magnetic field, spurring
intense theoretical work in this direction [14–35]. On the
other hand, moiré bands were also investigated for their
topological properties [36–42] and topological phase tran-
sitions were identified close to the magic angles [39, 43].

In view of the great wealth of correlation and topologi-
cal phenomena occuring with moiré bilayer graphene, it is
desirable to extend studies to multilayer, and specifically
trilayer geometries, in which moiré patterns also appear
for small rotation angles. Flat bands in bilayer result
from an interplay between the K (or K’) Dirac points in
each layer and the situation with three or more Dirac
points has yet to be explored. At low energy and close
to half-filling, the band structure is formed only from the
electron states of the Dirac cones in each layer [44]. A
moiré band theory describing such as state, that does not
require a crystalline lattice, is built in Ref. [3]. In this
paper, we extend this theory to multilayer graphene and
discuss in depth the symmetry and topology for three
layers. We find magic angles of vanishing Dirac veloci-
ties; they are not related to a complete flattening of the
spectrum, rather by a flattening along certain symmetry
lines. We also characterize the different moiré bands by
the irreducible representations they generate at the high-
symmetry points and lines. Based on the compatibility
between these representations [45, 46], we are able to

prove the remarkable result that all bands are connected
such that no subset of bands can be energetically isolated
from the others. The most obvious consequence is that
the system remains metallic at arbitrary energy. This
property requires particle-hole symmetry - neglecting the
band curvature in the vicinity of the original K points.
Nonetheless, slightly breaking this symmetry does not
open a gap [47].
Bloch band coupling. We detail the derivation of the
band structure of the moiré pattern in twisted multilayer
graphene. When the twisting angle is small, a moiré pat-
tern is formed by the interference of lattices between the
different layers. Restricting the analysis to Dirac fields
near the K points of each layer [3, 7, 44] (see also Ref. [48])
and assuming a local short-range tunnel amplitude be-
tween atoms in consecutive planes, one derives the fol-
lowing Hamiltonian

H(ab)(δpa, δpb) = vF δp · σδa,b

+ wab
3∑
j=1

δδpa,δpb+qa,bj
T j

(1)

where wab are hopping energies between the neighboring
layers a and b. The first term in Eq. (1) represents the
Dirac cones in each layer and δp is a small momentum
deviation from the K point for the layer a. We have
introduced the matrices

T j+1 = σ0 + cos(2πj/3)σx + sin(2πj/3)σy (2)

associated with the three symmetric momentum direc-
tions qa,b1 = MabK −K, qa,b2 = C3zq

a,b
1 , qa,b3 = C3zq

a,b
2 .

Mab the rotation around z with the twist angle θab sep-
arating the layers a and b and C3z with angle 2π/3. For

small twist angles, qa,b1 is perpendicular to K so that all
the qabj are parallel for fixed j (see below).
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FIG. 1. Trilayer graphene with the same rotation angle
θ12 = θ23 between consecutive layers. (a) Original Brillouin
zones in each layer with their respective K points. (b) k-space
lattice generated by the vectors qab

j (for q12
j = q23

j ). Green,
red and blue sites belong respectivement to the layers 1, 2, 3.
(c) Moiré Brillouin zone with high-symmetry points Γ, KM ,
K′M , M and high-symmetry lines (in black).

The magnitudes of the vectors |qa,bj | = 2|K| sin(θab/2)
depend on the twist angles. The second term in Eq. (1)

couples momenta δpa and δpb + qa,bj in layers a and b
which generates a lattice in momentum space for each
pair of consecutive layers. To make the calculation
tractable and maintain an emergent periodicity in mo-
mentum space regardless of whether the multilayer sys-
tem itself is crystalline, one has to assume that the ratios
of twist angles are rational numbers. This periodicity re-
sults in moiré bands which we compute numerically and
classify according to their irreducible representations at
the high-symmetry points and lines. On the contrary, if
the twist angles were incommensurate, or the qabj vectors
are not parallel for fixed j, then successive applications
of the Hamiltonian (1) would reach arbitrary momentum
and the moiré periodicity would be absent.

The Hamiltonian (1) reduces to the model of Ref. [3]
for bilayer and we henceforth focus on the trilayer ge-
ometry. We take the rotation angle θ12 as a reference
and introduce the moiré magnitude kD = 2|K| sin(θ12/2).
We rescale all momenta by kD and the Hamiltonian as
H̃ = H/(vF kD). Fixing the direction of qa,b1 along y, we
use the complex notation

q23
1 = ei

π
2 ; q23

2 = ei
7π
6 ; q23

3 = e−i
π
6 ; (3)

and q12
j = (p/q)q23

j for all j, where p and q are coprime
integers. The Hamiltonian (1) can then be written as

H̃QmQn(k) = (k−Qm)·σδmn+α
∑
j

T jδQm,Qn−qmnj (4)

where we assume a uniform tunnel amplitude wab = w
and introduce the dimensionless coupling α = w/(vF kD)
between Dirac cones. The vectors Qm form a k-space
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FIG. 2. Moiré bands (a-d) and renormalized Dirac-point ve-
locities (e) at the symmetric points Γ (red) and KM (green).
The eight bands closest to zero energy are represented along
the moiré Brillouin zone trajectory −M → Γ→M → KM →
Γ for α = 0.2, 0.28, 0.42, 0.85 (a-d). The particle-hole sym-
metry discussed in the main text - sending k to −k and E
to −E is clearly visible along the path −M → Γ → M . (e)
Velocities of the two Dirac cones at Γ and KM as function of
α.

lattice, see Fig. 1b, where each site is associated to a
specific layer.

Equal twist angles. We first consider the most symmet-
ric case of evenly rotated planes where q12

j = q23
j . A

representative set of moiré spectra obtained from Eq. (4)
with different values of the coupling α is displayed in
Fig. 2a-d. The moiré bands exhibit a rich structure. The
first remarkable feature is that all bands are connected:
it is impossible to isolate a set of bands which are de-
tached from the rest. We provide below a formal proof
for this statement based on irreducible representations at
symmetric points and lines, and afterwards extend it to
arbitrary p and q.

Three Dirac cones are attached at zero energy to the
points Γ, KM and K ′M (see Fig. 1b) as α is varied. We
display the corresponding Dirac velocities of the cones
at Γ and KM (with K ′M velocity linked by symmetry to
that of KM ) in Fig. 2e and find a set of magic angles - in
analogy with the bilayer case - where one of these veloci-
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ties vanishes. The difference with the bilayer case is that
these magic angles are not associated with a flattening of
the whole spectrum which would be at odds with the fully
connected band structure. However, we do see a flatten-
ing of part of the spectrum close to magic angles: on the
M−KM line (for the second levels) when α = 0.28, close
to Γ when α = 0.85, for the first two magic angles. This
flattening along one-dimensional directions in k−space
opens interesting perspectives for the realization of ex-
otic correlated many-body physics. Of course the prop-
erty of a gapless spectrum cannot result in a quenched
kinetic energy as occurs in the bilayer case [3–8]. How-
ever, tuning the chemical potential close to flat regions of
the spectrum increases strongly the density of states and
is likely to lead to instabilities towards charge-ordered or
superconducting anisotropic phases [49, 50].
Symmetries The moiré reciprocal lattice vectors b1 =
q12
1 − q12

2 , b2 = q12
1 − q12

3 generate the whole lattice in
Fig. 1b. The different layers (colors) are coupled by the

qa,bj vectors. Bloch periodicity takes the form

H̃(k − bi) = V biH̃(k)V bi†, V biQm,Qn = δQn,Qm+bi . (5)

The spectrum is thus invariant upon shifting the origin
of k by a combination of b1 and b2.

The moiré lattice also transforms into itself by the ac-
tion of a 2π/3 rotation C3z around Γ. In the Hamil-
tonian language, the corresponding operator is given by
C3z = exp(i2πσz/3)δQm,C3zQn . We note that if Qn is in
a given layer so is C3zQn, such that the three layers are
not mixed by the rotation. The C2x symmetry operates
a reflexion accross the x-axis going through the Γ point
(red in Fig. 1b). As such, C2x sends lattice sites of layer 1
to 3 and viceversa but keeps layer 2 invariant. The corre-
sponding symmetry operator is C2x = σxδQm,C2xQn . The
two symmetry operators induce the Hamiltonian trans-
formation

C3zH̃(k)C†3z = H̃(C3zk), C2xH̃(k)C†2x = H̃(C2xk), (6)

which leave the spectrum invariant. The antiunitary
C2zT symmetry acts locally on the moiré lattice. It
takes complex conjugation K and reverses the pseudo-
spin direction. It is represented by the operator C2zT =
σxδQm,QnK, which squares to 1 and commutes with the

Hamiltonian H̃(k). It also commutes with the spatial
symmetries C3z and C2x.

The moiré model also possesses a unitary particle-hole
(p-h) symmetry. The original k · p Dirac Hamiltonian

of the single layer graphene sheet H(k) = ~k · ~σ has a
unitary particle-hole symmetry H(k) = −H(−k) due to
the absence of k2 terms in the Hamiltonian. Since our
model is based on this low-energy expansion, it retains a
similar symmetry with the operator

P = δQm,−QnζQn (7)

Γ1 Γ2 Γ3 M1 M2 K1 K2K3 ΓM1 ΓM2

E 1 1 2 E 1 1 E 1 2 E 1 1

2C3 1 1 -1 C2 1 -1 C3 1 -1 C2 1 -1

3C2 1 -1 0 C−1
3 1 -1

TABLE I. Character table of irreducible representations at
high symmetry momenta and lines in magnetic space group
P6′2′2. E, C3, and C2 represent the conjugation classes gen-
erated from identity, C3z and C2x. The notation ΓMi stands
for the symmetric line Γ−M .

where ζQn is +1 for Qn belonging to the lower and top
layers and −1 for the middle layer. With this, we have
P2 = PP† = 1. Importantly, one checks that P com-
mutes with all other symmetry operators, C3z, C2x and
C2zT , and satisfies

PH̃(k)P† = −H̃(−k). (8)

This is to be contrasted with the p-h operator Pbi iden-
tified [39] for moiré bilayer which has: (i) P2

bi = 1, and
(ii) anticommutes with C2x, i.e. {Pbi, C2x} = 0, instead
of the commutation found for P.

Based on the generators discussed so far, the sym-
metry group of the moiré lattice is the magnetic space
group called P6′2′2 (#177.151 in the BNS notation [51]).
Although the same group describes moiré bilayer, the
physics is different here. It indeed originates from 3 Dirac
cones, instead of two, and the extra particle-hole sym-
metry is essentially different. The high-symmetry points
and their little co-groups are Γ (C2x, C3z, C2zT ,P), KM

(C3z, C2zT ,PC2x) and M (C2x, C2zT ,P). The symmetries
on the high-symmetry lines are Γ −M (C2x, C2zT ) and
Γ−KM (C2xP, C2zT ). The classification of the different
irreducible representations at the symmetric points and
lines are given in Table I. At Γ, M , KM and on the line
Γ−M , each energy or band in Fig. 2 is characterized by
a certain representation determined from the character,
i.e. from the eigenvalues of the operators C3z and C2x
restricted to this (possibly degenerate) energy.
First proof of all-connected bands. We now prove by con-
tradiction that all bands are connected such that there is
no gap in the spectrum at any energy. We assume a sub-
space of isolated bands between the energies ε1,k and ε2,k.
By p-h symmetry, a symmetric set of bands exists in the
energy window (−ε2,−k,−ε1,−k) and, consequently, the
N1 bands between −ε1,−k and ε1,k must be disconnected
from all other bands. We focus on these N1 bands and
investigate their transformation property under C2x. C2x
remains a symmetry along the line connecting Γ and M
such that their total character must coincide at each end,
or χC2Γ = χC2M .

We call mΓi the multiplicity of the representation i =
1, 2, 3 in the set of N1 bands, and mMi

the multiplicity of
the representation i = 1, 2 in the set of N1 bands at M .
Hence we have the equations: mΓ1

+mΓ2
+ 2mΓ3

= N1,
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mM1
+mM2

= N1, mΓ1
−mΓ2

= χC2Γ and mM1
−mM2

=
χC2M which leads to

mM2
= mΓ2

+mΓ3
. (9)

For α = 0, we have three Dirac cones around Γ, KM and
K ′M and a gapped spectrum at M . At Γ, the zero energy
subspace is doubly degenerate and the character of C3z
is simply given by Tr(ei

2π
3 σz ) = −1 corresponding to the

irreducible representation Γ3 as indicated in Table I. We
thus have mΓ3

= 1, mM2
= mΓ2

= 0 when restricted
to zero energy and α = 0. Increasing α away from zero,
the P symmetry is maintained and commutes with C3z
and C2x such that any band associated to a given repre-
sentation collapsing at (or departing from) zero energy,
at either Γ or M , must move with its energy symmetric
p-h partner associated to the same representation. As a
result, the multiplicities mΓj and mMj

can only change
by units of two in such processes. The same argument
extends to non-zero energies where each band with en-
ergy ε and representation Γj (or Mj) has a p-h partner
with energy −ε and the same representation. Since k
and −k are identified at Γ and M such that the interval
(−ε1,−k,+ε1,k) is symmetric, we finally obtain by con-
tinuity with α that the multiplicity mΓ3 must be odd
while mM2 and mΓ2 are both even integers. It contra-
dicts Eq. (9), thus completing the proof.

General proof for unequal twist angles. Our discussion
was so far restricted to the symmetric configuration of
equal p and q. The C2x and P symmetries are broken
when p and q are different whereas C3z and C2zT are
maintained. However, a remnant of p-h symmetry still
exists in the form of a mirror symmetry Ππ/6 with respect
to the plane orthogonal to the layer and crossing Γ and
KM , leaving each layer invariant. It corresponds to the
operator Ππ/6 = PC2xC3z with Π2

π/6 = 1, acting as

Ππ/6H̃(k)Π†π/6 = −H̃(Ππ/6k), (10)

which associates pairs of mirror-symmetric momenta
with opposite energies. Extending the arguments of
Ref. [40], we show that a set of isolated bands with C2zT
symmetry cannot accommodate an odd winding number
Nt, corresponding for example to an odd number of Dirac
cones. The derivation is explicit in Ref. [39, 40] for two
bands and a vanishing total Berry phase (Wilson loop)
with Nt = −2e2, where the Euler class e2 is an inte-
ger topological invariant. Adding more bands, windings
around singularities can change sign but keep a definite
parity while the parity of e2 defines a Z2 topological in-
variant, the Stiefel-Whitney class w2. Then, the rela-
tion Nt = −2w2 simply enforces that the winding num-
ber must be an even integer. More intuitively, we note
that Dirac points are monopoles attaching Dirac strings.
They can annihilate in pairs when of opposite signs or
form a topological isolated band by combining pairs of

same sign [38, 39], but in all cases they need to pair to
form an isolated set of bands.

We now show by contradiction that all bands are con-
nected by gapless points in our trilayer moiré model for
arbitrary p and q. As already discussed above, we can
assume, without loss of generality, a set of disconnected
bands symmetric around zero energy. P-h symmetry im-
plies that all band crossings at non-zero energy come in
pair such that the analysis of the parity of Nt can be
restricted to zero-energy modes. A single Dirac cone is
protected by C2zT and is pinned at zero energy by p-h
sP. p-h further protects the parity of Nt for zero modes
as α is varied. By continuity with the case α = 0 where
we have three Dirac cones and Nt = 3, we finally obtain
that Nt is odd, in contradiction with Nt = −2w2, which
completes our proof that all bands must be connected.

In summary, we showed that trilayer twisted graphene
exhibits band flattening along symmetry lines and close
to magic angles. We also proved, by compatibility of
band representations for evenly twisted planes or by
counting an odd number of Dirac points protected by
C2zT , that the system is always a metal with an infinite
connectivity, an unprecedented feature in standard ma-
terials [45, 52–54]. This property relies on p-h symmetry
emerging for small twisting angles. We checked that this
condition is practically realized already for angles close to
the first magic angle [47]. Since it originates from the un-
derlying three Dirac cones, we conjecture that the prop-
erty of infinite band connectivity will appear in many
other configuration such as multilayer moiré graphene
with an odd number of planes. To further test this con-
jecture, we computed the band spectrum [47] for four and
five twisted layers with indeed the result that it is fully
connected for five but not for four layers.
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