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Soft mechanical metamaterials can support a rich set of dynamic responses, which, to date, have
received relatively little attention. Here, we report experimental, numerical, and analytical results
describing the behavior of an anisotropic 2D flexible mechanical metamaterial when subjected to
impact loading. We not only observe the propagation of elastic vector solitons with three components
- two translational and one rotational - that are coupled together, but also very rich direction-
dependent behaviors such as the formation of sound bullets and the separation of pulses into different
solitary modes.

Ongoing advances in digital manufacturing technolo-
gies are enabling fabrication of systems with an unprece-
dented level of compositional and structural complexity
[1–3]. This remarkable control of geometry has stimu-
lated major advances in the design of mechanical meta-
materials - designer matter with unique mechanical prop-
erties that are dictated by their engineered structure
[4, 5]. While initial efforts in the field have focused on
systems with unusual linear properties, such as negative
Poisson’s ratio [6–8], negative stiffness [9, 10], and neg-
ative thermal expansion [11, 12], large deformation and
non-linearities have been recently embraced as a means
toward new functionalities, including programmability
[13], energy absorption [14], and shape transformation
[15]. Moreover, it has been shown that highly deformable
mechanical metamaterials can be designed to support the
propagation of a variety of non-linear waves with large
displacement amplitudes [16–19], providing a convenient
platform to study non-linear wave physics. However, to
date the investigation of the non-linear dynamic response
of flexible metamaterials has been limited to 1D systems.

Here, we investigate the nonlinear dynamic response
of a 2D flexible mechanical metamaterial comprising a
periodic arrangement of squares connected at their ver-
tices by thin ligaments [18, 20, 21]. Remarkably, our
experiments and analyses reveal that several new physi-
cal phenomena emerge when subjecting the structure to
low-energy impacts. First, our system supports the prop-
agation of elastic vector solitons with three polarization
components - two translational and one rotational. Sec-
ond, we investigate the effect of the anisotropy of the
medium on the 2D nature of the soliton and find that
such anisotropy plays a crucial role, leading to rich new
nonlinear effects. For example, for propagation at 45◦

from the symmetry axis, a distinct focusing effect is ob-
served. The pulse does not spread along either direction,
suggesting that sound bullets may exist in our system.

Moreover, we find that for most other propagation angles
the wave separates into two distinct solitary modes, each
following a principal direction of symmetry. While 2D
non-linear elastic waves have been previously studied in
granular media [22–25], the monolithicity and printabil-
ity of our system allow facile control of the architecture,
and hence control of the system’s non-linear dynamic re-
sponse, providing a powerful platform to explore, visual-
ize, and engineer new wave phenomena.

We start by studying experimentally the response of
a 2D circular sample with 30 squares along its diameter
when excited with an impactor (see Fig. 1a). Our sample
is fabricated out of polydimethylsiloxane (PDMS) using
direct ink writing, an extrusion-based 3D printing ap-
proach [26]. Steel spheres with a diameter of 4.35 mm
are embedded in the middle of the squares to modify
their inertial properties. All squares are rotated by offset
angles of θ0 = 25◦, have center-to-center-distance of a =
9.27 mm and are connected to one another by ligaments
approximately 5 mm in width (see Fig. 1b). In our ex-
periments we impact the sample at different points along
its circumference to initiate pulses that propagate along
different directions defined as

ê|| = cosφ êx + sinφ êy, (1)

where êx and êy denote the two directions of periodicity
of the system, and impact angle φ is the angle between
the normal to the impactor and êx (see Fig. 1a). Finally,
we record the impact event with a high speed camera,
allowing measure of local vectorial displacement and ve-
locity via digital image correlation (DIC) [27, 28] (See SI
for additional information).

In Fig. 1c-f, we report contour plots of the velocity
along ê||, v||, at t = 5.5 ms after impact for φ = 0◦,
15◦, 30◦ and 45◦. Moreover, for each impact angle we
also show the spatial-temporal evolution of v|| along the
propagation direction (focusing on the region delimited
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FIG. 1. (a) Schematic of the system. (b) Definition of velocity
of squares. (c)-(f) Contour plots of parallel velocity v|| and t-d
contour plots of velocity along indicated direction for impact
angles of φ = 0◦, 15◦, 30◦and 45◦. The magenta squares are
those to which the displacement is applied. The full time
evolution is available in Movie S1.

by the yellow dashed lines in the snapshots), allowing
extraction of pulse speed (details in SI). Three key fea-
tures emerge from these plots. First, for impact angle
φ = 0◦ the pulse propagates in a solitary fashion (i.e.,
it maintains both its shape and velocity), as the veloc-
ity profile is characterized by a single peak with nearly
constant width. Second, for φ = 15◦ and 30◦ the exci-
tation splits into two separate pulses. This is apparent
both from the asymmetric velocity profile and from the
two peaks seen in the spatial-temporal evolution of v||,
each with constant velocity and pulse width. Third, for
φ = 45◦ we again have a single pulse propagating through

the sample, but this time the wave front keeps its shape
in both the e|| and e⊥ directions. As a matter of fact, the
pulse transversal width is the same as the impactor width
(see SI for more details). This suggests that for φ = 45◦

the wave has a transversal self focusing effect, balancing
the linear beam diffraction and stabilizing the pulse lat-
eral width. This potentially leads to the generation of
compact sound bullets of very large amplitudes, which
may dramatically impact a variety of applications, such
as biomedical devices, nondestructive evaluation, and de-
fense systems [29–31].

To better understand our experimental results, we nu-
merically model the system as an array of rigid squares
connected at their vertices via a combination of linear ax-
ial (with stiffness ks=8180 N/m and kl=16360 N/m) and
rotational springs (with stiffness kθ = 0.0312 N·m/rad)
[18, 32, 33]. Moreover, we assign to the [i, j]-th square
three degrees of freedom (DoF): the displacement in the

êx direction, u
[i, j]
x , the displacement in the êy direction,

u
[i, j]
y , and the rotation around the z-axis, θ[i, j]. Using

these definitions, the equations of motion for the [i, j]-th
square are given by

mü [i, j]
γ =

4∑
p=1

F γ [i, j]
p , Jθ̈ [i, j] =

4∑
p=1

M [i, j]
p , (2)

where γ = x, y, and m=0.797 g and J=5.457 g·mm2 are,
respectively, the mass and moment of inertia of the rigid

units. Moreover, F
x [i, j]
p and F

y [i, j]
p are the forces along

the êx and êy directions generated at the p-th vertex of

the [i, j]-th unit by the springs and M
[i, j]
p represents the

corresponding moment (see SI for their explicit expres-
sions).

By numerically solving Eqs. (2) via the 4th order
Runge-Kutta method, we find that the physical phenom-
ena observed in our tests (i.e. soliton-like pulses, mode
separation for φ = 15◦ and 30◦, and self-focusing for
φ = 45◦) not only persist, but actually become more
accentuated when considering a larger model with 60
squares along the diameter (see Fig. 3 and SI). Fur-
thermore, in our numerical analysis we also excite pla-
nar waves on square-shaped samples, and again observe
soliton-like pulses and separation of modes (see Fig. S11).
As such, our numerical results indicate that the phe-
nomena observed in the experiments are not artifacts in-
troduced by either edge effects, damping or excitation,
but rather emerge because of the bulk properties of the
medium.

Since our numerical results reveal that the phenom-
ena observed in our experiments are a robust feature of
the system, we next explore deeper insights into the non-
linear dynamic properties of our system by simplifying
Eqs. (2) to derive analytical solutions for the case of pla-
nar waves. To this end, we assume that the wavelength
of the propagating waves is much wider than the cell size
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FIG. 2. Numerical results for a circular model with 60 squares along its diameter. (a) Contour plots of v|| at t = 12 ms for all
four impact angles. (b) Spatial-temporal map of v|| for all considered impact angles. The magenta squares in (a) are those to
which the displacement is applied. The full time evolution is available in Movie S2.

a and that θ[i, j] � 1. We then take the continuum limit
of Eqs. (2) and retain nonlinear terms up to the third
order to obtain the continuum governing equations

müx =a2
[
kl∂xxux + ks∂yyux +

tan θ0 a
2kl

6
∂xxxθ

+ kl
(
tan θ0 + θ − tan θ0 θ

2/2
)
∂xθ
]
, (3a)

müy =a2
[
ks∂xxuy + kl∂yyuy +

tan θ0 a
2kl

6
∂yyyθ

+ kl
(
tan θ0 + θ − tan θ0 θ

2/2
)
∂yθ
]
, (3b)

Jθ̈ =a2
(
ks − kl tan2 θ0 − 4kθ

)
∇2θ/4

− 2a2(kl tan2 θ0 + 4kθ)θ − 3a2kl tan θ0 θ
2

− a2kl(tan θ0 + θ − tan θ0θ
2/2)(∂xux + ∂xuy)

− a2kl
(
13− 15 tan2 θ0

)
θ3/12, (3c)

where ∂γf = ∂f/∂γ, ∇2 = ∂xx+∂yy and ux, uy and θ are
three continuous functions which interpolate the discrete

variables u
[i, j]
x , u

[i, j]
y and θ[i, j], respectively (see SI for

details).
To solve Eqs. (3), we focus on planar waves propagat-

ing along the ê|| direction and introduce the traveling
coordinate ζ = x cosφ + y sinφ − ct, with c being the
pulse velocity. Introduction of ζ into Eqs. (3), integra-
tion of Eqs. (3a) and (3b) with respect to ζ and their
subsequent substitution into Eq. (3c), yields

dζζθ = C1θ + C2θ
2 + C3θ

3, (4)

with

C1 = −4F
[
(Ex1 + Ey1 − 2) sin2 θ0 − 2Kθ

]
,

C2 = −3F sin 2θ0 (Ex1 + Ey1 − 2) ,

C3 = −F (7 cos 2θ0 − 1) (Ex1 + Ey1 − 2) /3,

(5)

and

Exγ =
cos2α φ

cos2 φ+ ks
kl

sin2 φ− mc2

kla2

,

Eyγ =
sin2α φ

ks
kl

cos2 φ+ sin2 φ− mc2

kla2

,

F =
3kl sec2 θ0/2

a2
[
3ks
2 + kl tan2 θ0(Ex2 + Ey2 − 3

2 )
]
− 6

(
kθ − klc2J

ma2

) ,
(6)

where γ = 1, 2. Eq. (4) can be directly derived from the
Klein-Gordon equation with quadratic and cubic nonlin-
earities [34, 35], by substitution of the traveling wave co-
ordinate ζ. It admits well-known solitary wave solutions
of the form

θ =
1

D1 ± D2 cosh (ζ/W )
, (7)

where

D1 = − C2

3C1
, D2 =

√
C2

2

9C2
1

− C3

2C1
, and W =

1√
C1

.

(8)
Finally, the solution for the translational components ux
and uy can be obtained by integrating Eqs. (3a) and (3b)
with respect to ζ (see SI for details).

Having obtained an analytical solitary wave solution,
we now use it to validate our experimental and numerical
observations. To begin with, we note that the analyti-
cal solution confirms that the pulses propagating in our
2D mechanical metamaterial are solitons. Specifically, it
reveals that they are elastic vector solitons with three
components - two translational and one rotational - that
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FIG. 3. (a) Schematic highlighting the input signal Ain and
the translational amplitude of the excited soliton A. (b)
Translational amplitude A of the solitons excited by impacts
of amplitude Ain = 7 mm for φ ∈ [0, 45◦]. The triangular and
circular markers correspond to the velocities extracted from
our experimental and numerical results. (c)-(f) Translational
amplitude and associated deformation for all solitary modes.
Note that the displacements and rotations are 5 times am-
plified. excited by input signals with Ain = 7 mm and (c)
φ = 0◦, (d) φ = 45◦, (e) φ = 15◦ and (f) φ = 30◦.

are coupled together and copropagate without dispersion.
Note that although the springs used here are all linear,
the non-linearity still emerges from the ”+1” rotational
DoF through its non-linear geometrical coupling between
the two translational DoF. Next, we use our continuum
model to understand whether for specific loading direc-
tions φ the system supports solitary waves with differ-
ent modes. To this end, we start by noting that in our
experiments the impactor imposes a displacement with
amplitude

Ain = Ainê|| = Ain cosφ êx +Ain sinφ êy, (9)

to the squares that it contacts. This input signal excites
a vector soliton with translational amplitude

A = Axêx +Ayêy, (10)

where Ax and Ay are the amplitudes of its translational
components, which are functions of both the propagation
velocity c and the propagation angle φ (i.e. Ax(c, φ) and
Ay(c, φ) - see SI for details). Since the translational am-
plitude should be a projection of the input signal along

the direction of A (see Fig. 3a), it follows that

|A| =
√
A2
x +A2

y = Ain ·
A

|A|
, (11)

which provides a relation between the input signal ap-
plied by the impactor (i.e., the amplitude Ain and the
angle φ) and the propagating velocity c of the excited
solitary wave. Therefore, given a pair of input parame-
ters φ and Ain, Eq. (11) can be used to solve for c and,
once c is known, the form of the solitary pulse excited by
the impact via Eqs. (7), (3a) and (3b).

In Fig. 3b we show the evolution as a function of the
angle φ of A and c for solitons excited by impacts of
amplitude Ain = 7 mm (the input displacement applied
in our experiments). Interestingly, we find that for most
impact directions two different solitary modes are excited
by Ain, each characterized by a distinct velocity c and
translational amplitude A. Only for impact directions of
φ ∼ 0◦ and ∼ 45◦ is a single wave mode excited. Impor-
tantly, we also find that the velocities predicted by our
continuum model nicely agree with those extracted from
both our experimental (triangular markers) and numer-
ical (circular markers) results. Finally, to get a better
understanding of the different solitary modes excited by
the input signal, in Fig. 3c-f we show a snapshot of the
deformation induced by all excited modes for φ = 0◦,
15◦, 30◦ and 45◦. We find that, while for φ = 0◦ and 45◦

a pure compression wave propagates through the struc-
ture (i.e. all squares moves along the ê|| direction), for
φ = 15◦ and φ = 30◦ two mixed compression-shear soli-
tary modes are excited - a prediction that match well
with our experimental and numerical results.
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FIG. 4. (a) Schematic highlighting the full width at half max-
imum, W⊥. (b)-(c) Time evolution of W⊥ as extracted from
(b) experiments and (c) simulations for φ = 0◦ (red markers)
and φ = 45◦ (blue markers).

Finally, we focus on the transversal self-focusing effect
observed both in our experiments and numerical analy-
ses for φ = 45◦. To better quantify it, for φ = 0◦ and
45◦ we extract from both our experiments and numerical
simulations the width of the propagating pulses along the
ê⊥ direction, W⊥ (see SI for details). The results shown
in Fig. 4b and c indicate that W⊥ is rather constant
with time (or equivalently distance) for φ = 45◦ and that
its variation is significantly smaller relative to that ob-
served for φ = 0◦. As such, this analysis confirms the
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self-focusing effect observed in the contour plots of Figs.
1 and 2 for φ = 45◦.

To summarize, we have used a combination of experi-
mental, numerical, and analytical methods to study the
propagation of non-linear elastic waves in a 2D soft me-
chanical metamaterial comprising a network of squares
connected by thin and highly deformable ligaments. Our
results reveal that the system supports not only the prop-
agation of elastic vector solitons with three components
(two translational and one rotational), but also very rich
behaviors such as compact pulses (akin to sound bullets)
and separation of the pulses into different solitary modes.
As such, our study shows that soft mechanical metama-
terials provide a convenient platform to study non-linear
wave physics. Moreover, the 3D printability of these sys-
tems enables unique opportunities for engineering wave
phenomena, ultimately providing new opportunities to
control and manage intense vibrations and waves.
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