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We propose a new paradigm for realizing bound states in the continuum (BICs) by engineering
the environment of a system to control the number of available radiation channels. Using this
method, we demonstrate that a photonic crystal slab embedded in a photonic crystal environment
can exhibit both isolated points and lines of BICs in different regions of its Brillouin zone. Finally,
we demonstrate that the intersection between a line of BICs and line of leaky resonance can yield
exceptional points connected by a bulk Fermi arc. The ability to design the environment of a
system opens up a broad range of experimental possibilities for realizing BICs in three-dimensional
geometries, such as in 3D-printed structures and the planar grain boundaries of self-assembled
systems.

Bound states in the continuum (BICs), which are
radiation-less states in an open system whose frequency
resides within the band of radiative channels, have re-
cently attracted a great deal of interest for their appli-
cations in producing vector beams from surface emit-
ting lasers [1–8] and enhancing the resolution of certain
classes of sensors [9–11]. Originally proposed in 1929
in a quantum mechanical context [12], BICs have now
been found in a broad range of physical systems, such as
photonic crystal slabs [13–25], waveguide arrays [26–28],
strongly coupled plasmonic-photonic systems [29], meta-
surfaces [30, 31] acoustics [32–37], and water waves [38–
43]. Additionally, lines of BICs were recently found in
composite birefringent structures [44, 45]. In principle,
BICs can be classified into three main categories [46]:
those which are engineered using an inverse construc-
tion method, those which are protected by symmetry or
separability, and those which can be found ‘accidentally’
through tuning a system’s parameters. In practice how-
ever, systems supporting BICs from the first category are
difficult to experimentally realize due to the high degree
of fine-tuning required. Thus, much of the current ex-
citement surrounding BICs has focused on systems which
feature symmetry-protected and accidental BICs; more-
over, these BICs have been shown to possess topological
protection that guarantees their existence under pertur-
bations to the system [20, 45, 47–51].

Traditionally, the appearance of accidental BICs is un-
derstood in terms of modal interference [22, 46, 52], with
two or more resonances of the device destructively in-
terfering in the system’s radiation channels yielding a
bound mode spatially localized to the device. This in-
terpretation emphasizes how tuning the device’s param-
eters changes the spatial profiles of its resonances to re-
alize this modal interference, while considering the avail-
able radiation channels in the surrounding environment
as fixed. This is because most previously studied sys-
tems with accidental BICs consider devices embedded in
free space, where the outgoing propagating channels can-

not be readily altered. However, from this argument it is
clear that the environment is also important in determin-
ing the presence or absence of BICs: the environment’s
properties dictate the number and modal profiles of the
available radiation channels, and thus strongly constrain
when it is possible to achieve the necessary modal in-
terference. Yet thus far, the role of the environment in
creating BICs has remained relatively unexplored.

In this Letter, we show that the properties of the en-
vironment play an important role in determining where
BICs can exist, regardless of the specific geometry of the
device embedded in this environment. This argument is
presented using coupled-mode theory (CMT) [53–55] and
as such is completely general and applicable to all sys-
tems which exhibit BICs. As an example of this theory,
we then show that by embedding a photonic crystal slab
into a photonic crystal environment, both isolated BICs
and lines of BICs can be found in the resonance bands
of the photonic crystal slab depending on the number of
available radiation channels. Moreover, perturbations to
the environment can shift the locations of the system’s
BICs even when the photonic crystal slab layer remains
unchanged, demonstrating that the environment of a sys-
tem is an equal partner to the embedded device in deter-
mining the existence and types of BICs found in the sys-
tem. Finally, we show that when two resonance bands of
the photonic crystal slab undergo a symmetry protected
band crossing, it is possible for a line of BICs to pass
from one band to the other through a bulk Fermi arc.
Understanding the relationship between the device and
surrounding environment in forming BICs is a necessary
first step towards realizing BICs in three-dimensional ge-
ometries, such as grain boundaries in photonic crystals
[56] or self-assembled structures [57].

To illuminate the role of the environment in de-
termining the presence and properties of BICs in a
system, we first consider a photonic crystal slab em-
bedded in an environment, such that the entire sys-
tem is periodic in the transverse plane. For any



choice of in-plane wavevector, k‖ = (kx, ky), and fre-
quency, ω, the outgoing field can be written as a sum
of the incoming and scattered fields, Eout(x;k‖) =
Ein(x;k‖) + Eres(x;k‖). The incoming and outgoing
fields can be expressed in the basis of the environmental
channels, Ein(x;k‖) =

∑

n sin,ne
−ikz,n|z|ein,n(x;k‖) and

Eout(x;k‖) =
∑

n sout,ne
ikz,n|z|eout,n(x;k‖), in which

sin/out,n is the amplitude of the channel mode ein/out,n

traveling towards or away from the photonic crystal slab
with wavevector kz,n. The field resonantly scattered by
the photonic crystal slab can be expressed in terms of the
resonances (also called quasinormal modes) of the slab,
Eres(x;k‖) =

∑

j ajEres,j(x;k‖), which satisfy radiating
boundary conditions in z and have complex frequencies
ω̃j = ωj + iγj [55]. Focusing now on a single isolated
resonance, a0, with frequency ω̃0, from the linearity of
Maxwell’s equations these modal amplitudes can be re-
lated using coupled-mode theory (CMT)

− iωa0 = −(iω0 + γ0)a0 +KT sin, (1)

sout = Csin +Da0. (2)

in which C ∈ CN×N represents the direct transmission
and reflection through the photonic crystal slab, K =
D ∈ CN×1 gives the coupling of the resonance to the
available radiation channels, and N is the total number
of radiative channels at ω. If the system possesses 180◦

rotational symmetry about the z-axis (C2), such that
−k‖ is equivalent to k‖, by time-reversal symmetry C
and D can be shown to be related as [54]

CD∗ = −D. (3)

In the language of CMT, a BIC occurs when D = 0,
i.e. all of the outcoupling coefficients of the resonance to
all of the available radiation channels are simultaneously
zero. For this to occur accidentally with finite probabil-
ity, there must be at least as many degrees of freedom of
the system as there are unknown parameters of D. Thus,
naively one would expect to require 2N degrees of free-
dom to find BICs for the N complex coefficients compris-
ing D. However, while the resonance outcoupling coeffi-
cients, D, are dependent upon the specific patterning of
the slab, the direct scattering processes, C, are agnostic
to this patterning and can instead be considered using a
homogeneous dielectric slab [16, 58]. As such, C is essen-
tially constant for perturbations to the photonic crystal
slab and Eq. (3) represents a set of additional constraints
on D, halving its number of unknown parameters. Thus,
if an entire system is C2 symmetric, one only needs N
degrees of freedom to find accidental BICs.
A second symmetry commonly present in photonic

crystal slab systems is mirror symmetry about the z = 0
plane (σz). Although this symmetry is not required to
find BICs, its presence further reduces the number of un-
known parameters among the components of D as the
outcoupling coefficients dm,dn, form mirror-symmetric
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FIG. 1. (a) Schematic of a photonic crystal slab embedded
in a C2v symmetric photonic crystal environment of infinitely
tall dielectric rectangles (the rectangles in the environment
do not penetrate into the slab). The rectangles have length
and width lenv = wenv/2 = 0.23a and dielectric permittivity
εenv = 12, while the slab has height hslab = 0.5a, holes with
radius rslab = 0.22a, and dielectric permittivity εslab = 7,
where a is the lattice constant of the system. (b) Photonic
band structure of the slab resonances, ωres(k‖) (green), and
the first three low-frequency cutoffs of the radiation channels,
ωn(k‖) (blue, purple, and orange). (c) Quality factor of the
photonic crystal slab resonances as a function of k‖ calculated
using Meep [60]. Lines of BICs are seen for portions of Γ–X,
Γ–Y , X–M , Y –M , and near Γ–M , where only one environ-
mental channel is present, above the dashed purple line. Here
Γ = (0, 0), X = (1, 0), Y = (0, 1), and M = (1, 1). (d) Qual-
ity factor along Γ–Y showing two isolated BICs at Γ and near
k‖ = (0, 0.2π/a) where there are two radiative channels.

pairs dn = σdm with σ = ±1 depending on the sym-
metry of the resonance about z = 0 [59]. Thus, mirror
symmetry both halves the number of unknown param-
eters in D and also halves the number of independent
constraints represented by Eq. (3).

To provide an explicit example of how to use these
constraints to find BICs, consider the photonic crystal
slab embedded in a photonic crystal environment shown
in Fig. 1a. The presence of the photonic crystal environ-
ment breaks the degeneracy between the two polariza-
tions of light in homogeneous media, splitting the light
line, ω = c|k‖|, into separate frequency cutoff bands,
ωn(k‖), below which the nth radiative channel does not
exist [61]. As such, for the TE-like resonance band of the
photonic crystal slab shown in Fig. 1b, the central re-
gion of this band in the Brillouin zone (below the dashed
purple line in Fig. 1c) can couple to two radiation chan-



nels on each side of the slab, while the exterior region of
the resonance band can only couple to a single radiation
channel on each side.
First consider the single-radiation-channel region

above the dashed purple line in Fig. 1c. Here, there
initially appear to be 4 unknown parameters in D =
(dabove, dbelow)

T . However, as the system is mirror sym-
metric about z = 0 and the resonance band’s states are
even under this symmetry, D = d0(1, 1)

T , with d0 being
the remaining complex free parameter. Moreover, one
can show that the constraint represented by Eq. (3) in
this region can be written as,

d∗0(r + t) = −d0, (4)

which amounts to a constraint on the phase of d0, as
|r|2 + |t|2 = 1, where r and t are the direct transmission
and reflection coefficients and C = (r, t; t, r). Thus, in
this region there is only a single unknown parameter inD,
and as there are two degrees of freedom in the system, kx
and ky , lines of BICs can be found in the resonance band
in the single-radiation-channel region along portions of
the edge of the Brillouin zone, as well as near portions
of the Γ–M line, as shown in Fig. 1c. These lines of
BICs can be viewed as 1D topological defects, similar to
domain walls in spin-flip systems, across which angle(d0)
jumps by π [62]. Although the CMT analysis presented
here does not guaranteeD = 0, a suitable choice of gauge
using Eq. (4) allows for d0 ∈ R, and in this gauge d0
changes sign across the lines of BICs, guaranteeingD = 0
[62].
In the two-radiation-channel region, one finds that D

has two unknown parameters, and thus it is possible to
find isolated accidental BICs, similar to those found in
previous works of photonic crystal slabs embedded in ho-
mogeneous media [18, 20]. For the system shown in Fig.
1a, there is an accidental BIC near k‖ = (0, 0.2)π/a, and
a symmetry protected BIC at Γ where both radiative
channels are even under C2 but the resonance band is
odd, as marked in Fig. 1c.
To demonstrate that the environment is an equal part-

ner to the resonant device in determining the presence of
BICs, we increase the symmetry of the photonic crys-
tal environment (C4v as opposed to C2v) but preserve
the same photonic crystal slab, as shown in Fig. 2a.
Thus, although the frequencies and spatial profiles of
the resonances of the photonic crystal slab remain the
same, where they achieve complete destructive interfer-
ence in the radiation channels of the new environment
has changed, as can be seen by comparing the distribu-
tion of BICs found in Fig. 2c, to the distribution seen in
Fig. 1c. In the C4v symmetric environment, the isolated
accidental BIC in the two-radiation-channel region (of
the C2v structure - see Fig. 1c) has merged with the iso-
lated BIC at Γ, similar to the merging of BICs described
by Zhen et al. [20] and the line of accidental BICs near
the Γ–M line has shifted to lie exactly along Γ–M and
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FIG. 2. (a) Schematic of a photonic crystal slab embedded
in a C4v symmetric photonic crystal environment of infinitely
tall dielectric cylinders. The rods have radius renv = 0.18a
and dielectric εenv = 12, while the slab has height hslab =
0.5a, holes with radius rslab = 0.22a, and dielectric εslab = 7,
where a is the lattice constant of the system. (b) Photonic
band structure, with the same conventions as Fig. 1b. (c)
Quality factor of the photonic crystal slab resonances as a
function of k‖. Lines of BICs are seen in the one-radiation-
channel region above the dashed purple line, while an isolated
BIC is seen at Γ.

become protected by mirror symmetry about the x = y
line.

There is a curious feature of the lines of BICs along
X–M and Y –M found in both Figs. 1c and 2c: the lines
of BICs appear to abruptly terminate prior to reaching
M . Although such a termination is not precluded by the
coupled-mode analysis previously discussed, the lines of
BICs along X–M and Y –M are not accidental, but are
instead protected by symmetry, as the resonance band is
odd about the x = 0 (y = 0) plane along this portion of
the X–M (Y –M) high symmetry line, while the radiative
channel is even about the same plane, as shown in Figs.
3c and 3e. Thus, as the symmetry of the system has
not changed at these points along high symmetry lines,
it is strange that the modal profile of the resonance band
would suddenly change to allow for the state to couple
to the radiative channel. However, the disappearance
of the line of BICs from the resonance band coincides
with the location of an intersection with a second TE-
like resonance band of the photonic crystal slab, shown
in Fig. 3a-b. Elsewhere in the Brillouin zone these two
resonance bands couple and exhibit an avoided crossing,
but along the high symmetry lineX–M (Y –M) these two
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FIG. 3. (a) Frequencies and quality factors near M for two
TE-like resonance bands of the photonic crystal slab and C2v

symmetric photonic crystal environment shown in Fig. 1a.
There are two bulk Fermi arcs at k‖a/π = (1, 0.852), and
k‖a/π = (0.872, 1). (b) Model showing the bulk Fermi arc at
k‖a/π = (1, 0.852). (c)-(h) Cross-section of the Ex compo-
nent in the xy-plane of the Bloch mode profiles of the upper
resonance band (c), lower resonance band (d), and radiation
channel (e) at k‖a/π = (1, 0.6). Locations of the dielectric
features in the photonic crystal slab (c)-(d) or photonic crys-
tal environment (e) are denoted with light gray shading. (f)-
(h) Similar to (c)-(e), except at k‖a/π = (1, 0.96). Mode
profiles of the resonance bands were calculated using Meep

[60], while the radiation channel profiles were calculated using
MPB [63].

bands have opposite mirror symmetry about the x = 0
(y = 0) plane of the system, as shown in Figs. 3c and 3d,
and thus exhibit a band crossing.

If the coupling to the radiative channels could be ig-
nored such that the system were completely Hermitian,
this accidental band crossing would occur at a Dirac
point. Instead, the coupling of the resonance bands to
the outgoing radiative channels results in this system be-
ing non-Hermitian. Moreover, the two resonance bands
in question couple to the single available radiative chan-
nel at different rates, i.e. one resonance band possesses
a line of symmetry-protected BICs while the other reso-
nance does not. Due to this unequal radiative coupling,
where the hypothetical non-radiating Hermitian system
would possess a Dirac point connecting the two bands,
these two resonance bands are instead joined by a bulk
Fermi arc in the radiating non-Hermitian system [64].
Bulk Fermi arcs occur generically in non-Hermitian sys-
tems and form when a Dirac point is split into two ex-
ceptional points [65] connected by a contour where the
real part of the frequencies of the two resonance bands
are equal, Re[ω+] = Re[ω−]. When two bands are joined
at a bulk Fermi arc, they form two halves of a single
Riemann surface.

In the vicinity of the bulk Fermi arc, the effective
Hamiltonian for the systems considered here is

Ĥ = ωD − iγ + (vgyδky − iγ) σ̂z + vgxδkxσ̂x, (5)

which results in the spectrum of the resonance bands

ω± = ωD − iγ ±
√

v2gxδk
2
x + v2gyδk

2
y − γ2 − 2iγvgyδky.

(6)
Here, δkx and δky are the wavevector displacements from
the underlying Dirac point at k‖,D which has frequency
ωD, 2γ is the radiative rate of the resonance band which
couples to the single environmental channel, vgx and vgy
are the group velocities describing the dispersion near
the Dirac point, and σ̂x,z are Pauli matrices. Equations
(5) and (6) are written for the accidental band crossing
along X–M , but letting x ↔ y yields the correct set of
equations for the accidental band crossing along Y –M .
As can be seen, the spectrum given in Eq. (6) exhibits
a pair of exceptional points at (δkx, δky) = (±γ/vgx, 0),
where ω+ = ω−, and which are connected by a bulk Fermi
arc along the contour δkx < |γ/vgx| and δky = 0.
The connection between the two resonance bands at

the bulk Fermi arc explains the apparent abrupt termi-
nation of the lines of BICs in Figs. 1c and 2c. Along
the X–M high symmetry lines where δkx = 0, one res-
onance band remains a BIC with Im[ω] = 0, but which
band possesses the BIC switches when the line of BICs
passes through the bulk Fermi arc, where the two bands
are joined and form a single Riemann surface, as shown
in Fig. 3a,b. We can confirm that near M the symmetry
of the upper and lower bands switches along the X–M
line upon passing through the bulk Fermi arc by viewing
the modal profiles of the resonances on both sides of it.
As can be seen in Figs. 3c-h, for δky < 0, the odd x sym-
metry mode is found on the upper resonance band, but
for δky > 0 this mode is found on the lower resonance
band. Thus, the symmetry protected line of BICs does
exist along the entire high symmetry line, but passes from
the upper resonance band to the lower resonance band
through a bulk Fermi arc.
In conclusion, we have demonstrated that the environ-

ment surrounding a device is an equal partner in deter-
mining the presence of BICs. This ability to engineer
the environment rather than the device to realize BICs
in a system opens up a broad range of new experimental
possibilities. First, given the advent of advanced 3D-
printing techniques such as two-photon polymerization
technology [56], we expect that structures such as the
one described here can be straightforwardly fabricated
in photonic systems. Likewise, conventional 3D-printing
already enables the construction of acoustic systems with
complex unit cells [66, 67] which could be used to real-
ize BICs through environmental design. Moreover, there
are many photonic systems, such as planar grain bound-
aries in self-assembled structures [57], where controlling



the specifics of the embedded device may be very dif-
ficult, but engineering the environment is trivial, that
may yield an entirely different route to photonic BICs
than has been previously studied.
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diskrete eigenwerte,” Phys. Z. 30, 465 (1929).

[13] P. Paddon and Jeff F. Young, “Two-dimensional vector-
coupled-mode theory for textured planar waveguides,”
Phys. Rev. B 61, 2090–2101 (2000).

[14] V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Pad-
don, Jeff F. Young, and S. R. Johnson, “Photonic band
structure of dielectric membranes periodically textured
in two dimensions,” Phys. Rev. B 62, 4204–4207 (2000).

[15] T. Ochiai and K. Sakoda, “Dispersion relation and opti-
cal transmittance of a hexagonal photonic crystal slab,”
Phys. Rev. B 63, 125107 (2001).

[16] Shanhui Fan and J. D. Joannopoulos, “Analysis of guided
resonances in photonic crystal slabs,” Phys. Rev. B 65,
235112 (2002).

[17] Chia Wei Hsu, Bo Zhen, Song-Liang Chua, Steven G.
Johnson, John D. Joannopoulos, and Marin Soljačić,
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