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We propose a new cellular automaton (CA), the Sweep Rule, which generalizes Toom’s rule to
any locally Euclidean lattice. We use the Sweep Rule to design a local decoder for the toric code in
d ≥ 3 dimensions, the Sweep Decoder, and rigorously establish a lower bound on its performance.
We also numerically estimate the Sweep Decoder threshold for the three-dimensional toric code on
the cubic and body-centered cubic lattices for phenomenological phase-flip noise. Our results lead
to new CA decoders with provable error-correction thresholds for other topological quantum codes
including the color code.

To fault-tolerantly operate a scalable universal quan-
tum computer, one protects logical information using a
quantum error-correcting code, and removes errors with-
out disturbing the encoded information [1, 2]. This can
be achieved with stabilizer codes [3]. Each stabilizer gen-
erator is measured, yielding an outcome ±1, and a clas-
sical decoding algorithm then computes the recovery op-
erator. Unfortunately, optimal decoding of generic stabi-
lizer codes is computationally hard [4, 5]. Thus, to render
this task tractable one should restrict attention to codes
with some structure.

Topological stabilizer codes [6–12], such as the toric
and color codes, are highly structured due to the geo-
metric locality of their stabilizer generators. Namely, any
stabilizer returning a −1 measurement outcome indicates
the presence of errors in its neighborhood. By exploit-
ing this syndrome pattern, many efficient decoders with
high error-correction thresholds have been proposed [13–
26]. However, most of these decoders use global classical
information about the measurement outcomes and thus
require communication between distant parts of the sys-
tem. In any realistic setting, new faults appear during
the time needed to collect and process global syndrome
data [19, 27]. Thus, to avoid error accumulation we desire
fast decoders, which ideally use only local information.

A very promising class of topological quantum code de-
coders is based on cellular automata (CA) [28–30]. CA
decoders are very efficient because they naturally incor-
porate parallelization and can be implemented on ded-
icated hardware without any non-local communication.
As initially suggested in Ref. [13], a simple CA, called
Toom’s rule [31–33], can successfully protect quantum in-
formation encoded into the 4D toric code on a hypercubic
lattice. Moreover, recent numerical simulations [34–36]
indicate that heuristic decoders based on Toom’s rule
have non-zero error-correction thresholds for toric codes
in more than two dimensions.

In this article we address the fundamental question
whether using a CA is a viable error-correction strategy
for topological quantum codes. First, we propose a new
CA, the Sweep Rule, which generalizes Toom’s rule to
any locally Euclidean lattice in d ≥ 2 dimensions. The

Sweep Rule shrinks (k− 1)-dimensional domain walls for
any k = 2, . . . , d. Then, we use the Sweep Rule to design
a new local decoder of the toric code in d ≥ 3 dimensions,
the Sweep Decoder, and rigorously prove a lower bound
on its performance for perfect syndrome extraction. Fi-
nally, we numerically demonstrate that the Sweep Rule
suppresses errors when measurements are noisy. In par-
ticular, we estimate the sustainable threshold error rate
pbcc

sus = 0.99± 0.02% of the Sweep Decoder for phase-flip
errors and imperfect syndrome measurements in the 3D
toric code on the body-centered cubic (bcc) lattice; see
Fig. 1. Our decoder works reliably against Pauli X or
Z errors if the corresponding syndrome is at least one-
dimensional, i.e., not point-like, and the error rate is be-
low the threshold; thus it can protect topological quan-
tum memories in d ≥ 4 dimensions. Our results lead to
new decoders for the color code in d ≥ 3 dimensions; see
[37] or the accompanying article [38].
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FIG. 1. (Inset) The failure probability pfail(p, L) of the Sweep
Decoder for the 3D toric code on the bcc lattice L after Ncyc =
28 correction cycles, where p is the phase-flip error rate and L
is the linear size of L. We estimate the threshold pth(Ncyc) ≈
1.055% from the crossing point of different curves. (Main) We
find the sustainable threshold pbccsus = 0.99 ± 0.02% by fitting
the numerical ansatz from Eq. (10) to the data.

Limitations of Toom’s rule.—Consider the square lat-
tice with a classical ±1 spin placed on every face and
encode one bit of information by setting all spins to
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FIG. 2. (a) At time T the spin s
(T )
C = −1 (green face) differs

from its neighbors to the east s
(T )
E = 1 and north s

(T )
N = 1 (red

faces). According to Eq. (1), Toom’s rule sets s
(T+1)
C = 1. (b)

A 2D lattice built of three types of parallelograms. A domain
wall (red) cannot be removed by repeated application of a
naive generalization of Toom’s rule. (c) The 3D toric code
on the bcc lattice [39] has qubits on faces and X-stabilizers
associated with edges. Any configuration of Z errors (green)
results in a 1D loop-like X-syndrome (red).

be either +1 or −1. We want to protect the encoded
bit against random spin flips, ±1 7→ ∓1. This can be
achieved with a CA, which flips certain spins based on
locally available information. A simple example is the

deterministic Toom’s rule which sets the spin s
(T+1)
C at

time T + 1 to

s
(T+1)
C = sgn

(
s

(T )
C + s

(T )
E + s

(T )
N

)
, (1)

where sgn(·) is the sign function, s
(T )
E and s

(T )
N are the

neighboring spins on faces to the east and north at time
T ; see Fig. 2(a) The update can be simultaneously ap-
plied to all the spins in the square lattice.

We can rephrase Toom’s rule as a conditional spin up-
date determined by the local configuration of the 1D do-
main wall, i.e., the set of all edges of the lattice sepa-
rating faces with spins of different value. Let ε(T ) and
σ(T ) denote the set of faces with −1 spins and the cor-
responding domain wall at time T = 1, 2, . . .. We write
σ(T ) = ∂2ε

(T ) to capture the fact that σ(T ) is the bound-
ary of ε(T ) containing all the edges bounding faces in
ε(T ). Then, Toom’s rule flips a spin on some face f , i.e.,

s
(T+1)
f = −s(T )

f , iff the east and north edges of f belong

to σ(T ); see Fig. 2(a). If we know σ(T ) and the set of all
spins flipped between time T and T +1, which we denote
by %(T ), then the domain wall at time T + 1 is

σ(T+1) = σ(T ) + ∂2%
(T ) (2)

with addition modulo 2. Note that this update does not
require the knowledge of the actual spin values but only
the locations of flipped spins. Thus, it may be viewed
as a local rule governing the dynamics of the domain
wall. Moreover, if the domain wall disappears by time

T , i.e., σ(T ) = 0, then % =
∑T−1
i=1 %(i) can serve as an

estimate [40] of ε(1) with the boundary ∂2% matching the
initial domain wall σ(1). As we will see later, correcting
errors in the toric code in d ≥ 3 dimensions can also be
rephrased as estimating ε(1) given its boundary σ(1), by
exploiting the domain-wall structure of the syndrome.

This version of Toom’s rule works for the square lat-
tice, but it is not obvious how to generalize it to other
2D lattices, or to higher dimensions. To illustrate the
difficulty, consider the 2D lattice in Fig. 2(b). If one uses
a simple update rule “flip a spin iff east and north edges
of the face belong to the domain wall”, then there exist
spin configurations with domain walls which cannot be
removed by repeated application of this rule. For such
error syndromes, the Toom’s rule decoder fails to cor-
rect the erroneous spins. To define a workable version
of Toom’s rule, the lattice must have suitable properties,
which we now specify.

Causal lattices.—We consider a lattice L, which is a
triangulation (possibly without any symmetries) of the
Euclidean space R2. We denote by ∆i(L) the set of all
i-simplices of L. In particular, ∆0(L), ∆1(L) and ∆2(L)
correspond to vertices, edges and triangular faces of L.
We assume that each ∆i(L) contains countably many
elements and define the sweep direction as a unit vector
~t ∈ R2 not perpendicular to any edge of L.

We define a path (u : w) between two vertices u
and w of the lattice L to be a collection of edges
(u, v1), . . . , (vn, w) ∈ ∆1(L), where vi ∈ ∆0(L). If the
sign of the inner product ~t · (vi, vi+1) is the same for all
edges in the path (u : w), then we call the path causal
and denote it by (u lw). We remark that any pair of the
vertices of L is connected by a path but there might not
exist a causal path between them; see Fig. 3(a). Finally,
we define the causal distance

dl (u,w) = min
(ulw)

|(u l w)| (3)

to be the length of the shortest causal path between u
and w; if there is no causal path, then dl (u,w) =∞.

We observe that the sweep direction ~t induces a binary
relation � over the set of vertices ∆0(L). We say that
u precedes w, i.e., u � w for u,w ∈ ∆0(L), iff u = w or
there exists a causal path (u l w) and ~t · (vi, vi+1) > 0
for any edge (vi, vi+1) ∈ (u l w). Equivalently, we write
w � u and say that w succeeds u. Abusing the notation,
we write κ � w if all vertices ∆0(κ) of a k-simplex κ ∈
∆k(L) succeed w, i.e., u � w for all u ∈ ∆0(κ); similarly
for κ � w.

We can view the partial order � between vertices of
the lattice as a causality relation between points in the
(1 + 1)D spacetime with ~t corresponding to the time [41]
direction; see Fig. 3(a)(b). We define the future ↑(v) and
past ↓(v) of a vertex v ∈ ∆0(L) as the collection of all
simplices of L succeeding and preceding v, namely

↑(v) =

d⋃
k=0

{κ ∈ ∆k(L)|κ � v}, (4)

↓(v) =

d⋃
k=0

{κ ∈ ∆k(L)|κ � v}. (5)

Every finite subset of vertices V ⊆ ∆0(L) has a unique
supremum, the vertex supV , where supV lies in the fu-
ture of each u ∈ V , and furthermore supV lies in the past
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FIG. 3. (a) Vertices u and v are connected by a path (u : v)
(red), but there is no causal path between them; v and w
are connected by a causal path (v l w) (blue). We shaded
in green and blue the future ↑(v) and past ↓(v) of v. (b)
The causal diamond ♦ (V ) (blue) of a subset of vertices V =
{v1, v2, v3, v4} is defined as the intersection of the future of the
infimum of V with the past of the supremum of V . (c) The
Sweep Rule is defined for every vertex and locally updates ±1
spins on neighboring faces. Since the vertex v is trailing (see
below), spins on two green faces will be flipped.

of each vertex w which is in the future of each v ∈ V .
The infinum inf V is defined analogously. Lastly, we de-
fine the causal diamond ♦ (V ) as the intersection of the
future of inf V and the past of supV , i.e.,

♦ (V ) = ↑(inf V )∩↓(supV ). (6)

This discussion of causal structure generalizes to lat-
tices embedded in a torus; however, caution is needed
since the partial order is well-defined only within con-
tractible regions. For higher-dimensional lattices we
make certain assumptions about their causal structure,
such as the existence of unique infimum and supremum
of V . To avoid technicalities, we call lattices satisfying
those assumptions causal; see Appendix A. Note that
causal lattices are sufficient to define the Sweep Rule and
prove a non-zero threshold of the Sweep Decoder.

Sweep Rule.—Let L be a 2D causal lattice with ±1
spins on triangular faces and ε ⊆ ∆2(L) denote the set of
all faces with −1 spins. The corresponding domain wall
σ can be found as the boundary ∂2ε. Let v be a vertex
of L and denote by σ|v the restriction of the domain wall
σ to the edges incident to v. We say that v is trailing if
σ|v is non-empty and belongs to the future of v, namely
σ|v ⊂ ↑(v); see Fig. 4. We propose a new local spin
update rule defined for every vertex v of L.

Definition 1 (Sweep Rule). If a vertex v is trailing, then
find a subset ϕ(v) of neighboring faces of v in the future
↑(v) with boundary locally matching the domain wall, i.e.,
(∂2ϕ(v))|v = σ|v, and flip spins on faces in ϕ(v).

This Rule is deterministic and there is a unique ϕ(v),
which one can find in constant time. The spin update re-
sults in the domain wall being locally pushed away from
any trailing vertex v; see Fig. 4. Note that nothing hap-
pens if a vertex is not trailing. We can, however, consider
a very similar CA, the Greedy Sweep Rule, which always
tries to push the domain wall away from v in the sweep di-
rection ~t, irrespective of v being trailing; see Appendix B.

T = 1

~t ~t ~t

T = 2 T = 3

FIG. 4. For each trailing vertex v (black) at time T =
1, 2, 3 the Sweep Rule finds a subset ϕ(v) of neighbouring faces
(green) in the future ↑(v), whose boundary ∂2ϕ(v) locally

matches the domain wall σ(T ) (red), i.e., (∂2ϕ(v))|v = σ(T )|v.

Flipping spins in ϕ(v) pushes σ(T ) away from v in the sweep

direction ~t. Note that ϕ(v) and σ(T ) are always in the causal

diamond ♦
(
σ(1)

)
(blue) of the initial domain wall σ(1).

Lemma 2 (Sweep Rule Properties). Let σ be a domain
wall in the causal lattice L. If the Sweep Rule is si-
multaneously applied to every vertex of L at time steps
T = 1, 2, . . ., then

1. (Support) the domain wall σ(T ) at time T stays
within the causal diamond ♦ (σ) = ♦ (∆0(σ)), i.e.,

σ(T ) ⊂ ♦ (σ) , (7)

2. (Propagation) the causal distance dl (v, σ) =
minu∈∆0(σ) dl (v, u) between σ and any vertex v of

σ(T ) is at most T , i.e.,

dl (v, σ) ≤ T, (8)

3. (Removal) the domain wall is removed by time T ∗,
i.e., σ(T ) = 0 for all T > T ∗, where

T ∗ = max
(inf σlsupσ)

|(inf σ l supσ)|. (9)

See Appendix C for a proof.
The Sweep Rule may also be defined for vertices of a

d-dimensional causal lattice L with spins placed on k-
simplices ∆k(L), where k = 2, . . . , d. However, for k 6= d
the local choice of spins to flip ϕ(v) may not be unique
(this does not happen in 2D). Thus, we consider a family
of rules corresponding to different ways of choosing ϕ(v)
in such a way that, roughly speaking, the local causal
structure of the domain wall is preserved after flipping
spins on k-simplices in ϕ(v); see Appendix B.

Sweep Decoder.—We may use the d-dimensional ver-
sion of the Sweep Rule to decode the toric code on the
d-dimensional causal lattice L. Recall that the toric
code of type k = 1, . . . , d − 1 is defined by placing
qubits on k-simplices of L, and associating X- and Z-
stabilizers with (k − 1)- and (k + 1)-simplices. Then,
Z-stabilizers, Z-logical operators and X-syndromes cor-
respond to, respectively, the elements of im ∂k+1, ker ∂k
and im ∂k, where ∂i denotes the i-boundary operator; see
Appendix A. If ε ⊆ ∆k(L) is the set of qubits affected by
Z errors, then the corresponding X-syndrome is σ = ∂kε.
Thus, for k ≥ 2, decoding of Z errors can be phrased as
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the already discussed problem of estimating locations of
−1 spins given the corresponding domain wall. Note that
for k ≤ d−2 decoding of X errors is analogous but in the
dual lattice L∗ with the Z-syndrome forming a (d−k−1)-
dimensional domain wall.

Algorithm: Sweep Decoder

Input: X-syndrome σ ∈ im ∂k, k = 2, . . . , d− 1
Output: k-dimensional correction % ⊆ ∆k(L)

initialize T = 1, σ(1) = σ
unless T > Tmax or σ(T ) = 0 repeat:

1. apply the Sweep Rule simultaneously to every
vertex of L to get %(T )

2. find σ(T+1) = σ(T ) + ∂k%
(T )

3. update time step T ← T + 1

if T ≤ Tmax [42], then % =
∑T−1

i=1 %(i), otherwise
% = FAIL

return %

This Sweep Decoder may fail for either one of two rea-
sons. First, it might not terminate within time Tmax,
which results in % = FAIL. Second, the correction %
combined with the initial error ε may implement a non-
trivial logical operator, i.e., %+ε 6∈ im ∂k+1. However, the
Sweep Decoder a has non-zero error-correction threshold
— if the Z error rate is below threshold, then the failure
probability rapidly approaches zero as the code distance
grows. We establish this fact by deriving a lower bound
p∗th > 0 on the threshold.

Theorem 3 (Threshold). Consider a family of causal
lattices L of growing linear size L on the d-dimensional
torus, and define the toric code of type k = 2, . . . , d − 1
on L. There exists a constant p∗th > 0, such that for
any phase-flip error rate p < p∗th the failure probability of
the Sweep Decoder for perfect syndrome extraction goes
to zero as L→∞.

In Appendix D we present a rigorous proof of Theorem 3
based on renormalization group ideas [17, 28, 43]; here
we only outline the proof strategy.

Proof. First, we decompose each error configuration into
recursively defined “connected components,” where a
“level-n” connected component has a linear size growing
exponentially with n. The probability of a level-n con-
nected component is doubly-exponentially small in p/p∗th.
The connected components are well isolated from other
errors; therefore, using Lemma 2 and some modest as-
sumptions about the lattice family, we can show that a
connected component with linear size small compared to
L will be successfully removed by repeated application of
the Sweep Rule. Therefore, the Sweep Decoder fails only
if the error configuration contains a level-n connected
component with size comparable to L, which is very im-
probable for large L and p < p∗th.

Numerical simulations.—In Theorem 3 we assumed
that the Sweep Rule is applied flawlessly, but in a re-
alistic scenario the Rule itself is noisy. We have numeri-
cally investigated the performance of the Sweep Decoder
for the 3D toric code on the bcc lattice with qubits on
faces and a phenomenological noise model. Each cor-
rection cycle consists of one time step of the Sweep De-
coder, adding new Pauli Z errors on qubits with proba-
bility p and extracting syndrome bits, which are flipped
with probability p. Using Monte Carlo simulations we
find the threshold pth(Ncyc) for a fixed number Ncyc

of noisy correction cycles followed by perfect syndrome
extraction and full decoding. Note that pth(1) is the
threshold for perfect syndrome extraction. We are, how-
ever, interested in the so-called sustainable threshold
pbcc

sus = limNcyc→∞ pth(Ncyc) [27, 44]. We observe that
the threshold pth(Ncyc) is very well approximated by the
numerical ansatz

pth(Ncyc) ∼ pbcc
sus (1− (1− pth(1)/pbcc

sus )N−γcyc), (10)

with the fitting parameters pbcc
sus = 0.99± 0.02% and

γ = 0.855± 0.010; see Fig. 1. These numerical results
were actually obtained for a variant of the Sweep Decoder
based on the Greedy Sweep Rule, which has a higher
threshold than the decoder based on the Sweep Rule. In
Appendix B we discuss the Greedy Sweep Rule, explain
how it generalizes to locally Euclidean lattices, and use
it to estimate the sustainable threshold of the 3D toric
code on the cubic lattice pcubic

sus = 1.98± 0.02%.

Discussion.—We have presented a new CA, the Sweep
Rule, which generalizes Toom’s rule to any locally Eu-
clidean d-dimensional lattice. This Rule can be used
to decode a topological quantum code whose error syn-
drome is at least one dimensional, including the color
code; see [37, 38]. We proved that a decoder based on
the Sweep Rule has a non-zero accuracy threshold for the
toric code, and we numerically studied its performance
against a phenomenological noise model.

Our results provide a rigorous justification for using
CA error-correction strategies for topological quantum
codes. We hope that our proof techniques will lead to new
CA decoders with provable thresholds for codes on lat-
tices with boundaries, hyperbolic lattices or other quan-
tum low-density parity-check codes.

The Sweep Rule may be of independent interest
for defining statistical-mechanical problems inspired by
quantum information [45–47]. As for Toom’s rule, one
can consider a non-deterministic variant of the Sweep
Rule and study the evolution of spins generated by this
probabilistic CA. We conjecture that the resulting spin
dynamics is non-ergodic and that the phase diagram con-
tains regions with multiple coexisting stable phases, as
established in 2D by Toom [31].
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[43] P. Gács and J. Reif, Journal of Computer and System
Sciences 36, 125 (1988).

[44] B. J. Brown, N. H. Nickerson, and D. E. Browne, Nature
Communications 7, 4 (2015).

[45] A. Kubica and B. Yoshida, arXiv:1402.0619 (2014).
[46] B. Yoshida and A. Kubica, arXiv:1404.6311 (2014).
[47] A. Kubica, M. E. Beverland, F. Brandão, J. Preskill,

and K. M. Svore, Physical Review Letters 120, 180501
(2018).

http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1109/SFCS.1996.548464
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://dx.doi.org/10.1103/PhysRevA.83.052331
http://dx.doi.org/10.1103/PhysRevA.83.052331
http://dx.doi.org/10.1109/TIT.2015.2422294
http://dx.doi.org/10.1109/TIT.2015.2422294
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/quant-ph/9811052
http://arxiv.org/abs/quant-ph/9811052
http://arxiv.org/abs/quant-ph/0605138
http://arxiv.org/abs/quant-ph/0605138
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://arxiv.org/abs/1311.0277
http://dx.doi.org/ 10.1103/RevModPhys.88.045005
http://dx.doi.org/10.1088/1367-2630/17/8/083026
http://dx.doi.org/10.1088/1367-2630/17/8/083026
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://arxiv.org/abs/0905.0531
http://arxiv.org/abs/0905.0531
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.111.200501
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1103/PhysRevLett.109.180502
http://dx.doi.org/10.1103/PhysRevLett.109.180502
http://dx.doi.org/10.1088/1367-2630/16/6/063038
http://dx.doi.org/10.1103/PhysRevA.89.012317
http://dx.doi.org/10.1103/PhysRevX.5.031043
http://arxiv.org/abs/1703.01517
http://arxiv.org/abs/1709.06218
http://arxiv.org/abs/1709.06218
http://arxiv.org/abs/1712.00502
http://arxiv.org/abs/1712.00502
http://arxiv.org/abs/1802.08680
http://arxiv.org/abs/1302.3428
https://thesis.library.caltech.edu/1747/
https://thesis.library.caltech.edu/1747/
http://dx.doi.org/10.1038/npjqi.2015.10
http://dx.doi.org/10.1007/s00220-017-2923-9
http://dx.doi.org/10.1007/s00220-017-2923-9
http://dx.doi.org/10.1103/PhysRevLett.55.657
http://dx.doi.org/10.1103/PhysRevLett.55.657
http://dx.doi.org/10.1147/rd.481.0005
http://dx.doi.org/10.1147/rd.481.0005
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://arxiv.org/abs/1609.00510
http://arxiv.org/abs/1609.00510
http://dx.doi.org/10.22331/q-2018-05-24-68
https://thesis.library.caltech.edu/10955/
http://vzome.com
http://vzome.com
http://dx.doi.org/10.1016/0022-0000(88)90024-4
http://dx.doi.org/10.1016/0022-0000(88)90024-4
http://dx.doi.org/10.1038/ncomms12302
http://dx.doi.org/10.1038/ncomms12302
http://arxiv.org/abs/1402.0619
http://arxiv.org/abs/1404.6311
http://dx.doi.org/10.1103/PhysRevLett.120.180501
http://dx.doi.org/10.1103/PhysRevLett.120.180501

	Cellular-automaton decoders with provable thresholds for topological codes
	Abstract
	Acknowledgments
	References


