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We theoretically study mixtures of chemically-interacting particles, which produce or consume a
chemical to which they are attracted or repelled, in the most general case of many coexisting species.
We find a new class of active phase separation phenomena in which the nonequilibrium chemical
interactions between particles, which break action-reaction symmetry, can lead to separation into
phases with distinct density and stoichiometry. Due to the generic nature of our minimal model, our
results shed light on the underlying fundamental principles behind nonequilibrium self-organization
of cells and bacteria, catalytic enzymes, or phoretic colloids.

Microorganisms and cells can chemotax in response to
gradients of chemicals that they themselves produce or
consume [1, 2]. The same behaviour has been recently ob-
served at the nanoscale for individual enzymes [3–5], and
can be mimicked in synthetic systems using catalytically-
active phoretic colloids [6–13] . Importantly, when many
such particles are placed in solution, they interact with
each other through their influence on the chemical’s con-
centration field. Chemical interactions underlie a wide
variety of phenomena such as self-organisation in het-
erogeneous populations of microorganisms and cells (e.g.
quorum sensing [14] and competition for nutrients [15]
in bacterial ecosystems, or cell-cell communication via
chemokines [16]); aggregation of enzymes that partic-
ipate in common catalytic pathways into a metabolon
[17–19], which could be harnessed in the design of bet-
ter synthetic pathways [20]; or the self-assembly of active
materials from catalytic colloids [21, 22].

A key feature of chemical interactions between
two different species—whether they are synthetic cat-
alytic colloids, biological enzymes, or whole cells or
microorganisms—is that they are in general non-
reciprocal [7, 8]. The concentration field of a fast-
diffusing chemical around a chemically-active particle of
species i is, to lowest order, given by c− c0 ∝ αi/r where
αi is the activity of the species (positive and negative for
producer and consumer species), r is the distance to the
particle’s centre, and c0 is the reference concentration of
the chemical at infinity. In turn, the motion of a particle
of species j in response to gradients of the chemical is
given by a velocity V j = −µj∇c where µj is the mo-
bility of the species (positive or negative if the species
is directed towards regions of lower or higher concen-
tration of the chemical). Combining these two expres-
sions, one finds that the velocity of the j-species particle
in response to the presence of the i-species particle is
V ij ∝ αiµjrij/|rij |3 with rij = rj − ri, whereas the
velocity of the latter in response to the presence of the
former is V ji ∝ −αjµirij/|rij |3. Note that in general
V ij 6= −V ji for i 6= j because αiµj 6= αjµi, imply-
ing a broken action-reaction symmetry for inter-species

interactions, which would be impossible in a system at
thermodynamic equilibrium [23].

We have performed Brownian dynamics simulations
[24] of the model just described for a wide range of mix-
tures of chemically-interacting species; see Fig. 1 and
movies 1–12 in the Supplemental Material [24]. For bi-
nary mixtures we find that, while in a large region of
the parameter space the mixtures remain homogeneous,
the homogeneous state can also become unstable lead-
ing to a great variety of phase separation phenomena.
Here, phase separation is used in the sense of macroscopic
(system-spanning) separation typically into a single large
cluster (occasionally into two; see Fig. 1(a)) that coex-
ists with a dilute (or empty) phase. The phase separation
process may lead to aggregation of the two species into
a single mixed cluster, or to separation of the two into
either two distinct clusters or into a cluster of a given
stoichiometry and a dilute phase. The resulting config-
urations are qualitatively distinct for mixtures of one
chemical-producer and one chemical-consumer species,
as opposed to mixtures of two producer (or consumer)
species; compare panels (a) and (c) in Fig. 1. While
the typical steady-state configurations are static, for mix-
tures of producer and consumer species we also find that
static clusters can undergo a shape-instability that breaks
their symmetry, leading to a self-propelling macrocluster
(Fig. 1(b), movies 8 and 9). Randomly-generated highly-
polydisperse mixtures of up to 20 species also show ho-
mogeneous as well as phase-separated states (Fig. 1(d),
movies 11 and 12).

In the following, we will show how these results can be
understood by means of a continuum theory, and how the
observed phase separation behaviour is intimately related
to the non-equilibrium and non-reciprocal character of
the interactions. This represents a fundamentally new
class of active phase separation, in which the activity
arises from the non-equilibrium nature of the interactions
between particles that are otherwise non-motile, rather
than from the intrinsic activity of self-propelling particles
as commonly studied [25–36].

We consider a system consisting of M different species
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FIG. 1. Mixtures of chemically-interacting particles display a wealth of active phase separation phenomena. (a) Binary
mixtures of producer (red) and consumer (blue) species show, from left to right, homogeneous states with association of
particles into small “molecules”, aggregation into a static dense phase that coexists with a dilute phase, and separation into
two static collapsed clusters; see movies 1–3 in the Supplemental Material [24]. (b) The static aggregate (a, centre) can undergo
symmetry breaking to form a self propelled macroscopic cluster; see movies 8 and 9. (c) Binary mixtures of producer species
(red and blue) show homogeneous states without molecule formation, separation into a static dense phase and a dilute phase
that is depleted near the dense phase, and aggregation into a static collapsed cluster; see movies 4–6. (d) Randomly-generated
highly polydisperse mixtures (20 different species) can remain homogeneous or undergo macroscopic phase separation; see
movies 11 and 12. Simulation parameters for each case (a–c) can be found in the description of the corresponding movies.

of chemically-interacting particles, with concentrations
ρi(r, t) for i = 1, ...,M ; and a messenger chemical with
concentration c(r, t). The concentration of species i is
described by ∂tρi(r, t) − ∇ · [Dp∇ρi + (µi∇c)ρi] = 0
which includes a diffusive term with diffusion coefficient
Dp, which for simplicity is taken to be equal for all
species (implying that all particles are of similar size or,
in the case of microorganisms, all species show a sim-
ilar baseline level of non-directed random motion); as
well as an advective term describing motion in response
to gradients of the chemical. The concentration of the
chemical is described by ∂tc(r, t) − D∇2c =

∑
i αiρi

which includes diffusion with coefficient D, and pro-
duction or consumption of the chemical by all particle
species. Performing a linear stability analysis [24] of this
coupled system of M + 1 equations around a spatially-
homogeneous state with particle densities ρi(r, t) = ρ0i,
in the limit of a fast-diffusing chemical, we find that the
homogeneous state becomes unstable towards a spatially-
inhomogeneous state when the following condition holds∑

i

µiαiρ0i < 0. (1)

The instability corresponds to macroscopic phase separa-
tion, in the sense that it occurs for perturbations of infi-
nite wave length, specifically for perturbations with wave
number q2 < −(DDp)−1

∑
i µiαiρ0i, with those having

infinite wave length q → 0 being the first and most un-
stable. Importantly, the stability analysis also tells us
about the stoichiometry of the different particle species
at the onset of growth of the perturbation, which follows

(δρ1, δρ2, ..., δρM ) =

(
1,
µ2ρ02
µ1ρ01

, ...,
µMρ0M
µ1ρ01

)
δρ1. (2)

If only a single particle species is present (M = 1), the
instability criterion (1) describes the well-known Keller-
Segel instability [37], which simply says that the homo-
geneous state is stable for particles that repel each other
(µ1α1 > 0), whereas particles that attract each other
(µ1α1 < 0) tend to aggregate, with the end state being
a featureless macroscopic cluster containing all particles.
In contrast, we will now show that as soon as we have
mixtures of more than one species, the combination of
the instability criterion (1) and the stoichiometric rela-
tion (2) predicts a wealth of new phase separation phe-
nomena.

For binary mixtures (M = 2), the instability condition
(1) becomes µ1α1ρ01+µ2α2ρ02 < 0, and the stoichiomet-
ric constraint (2) implies that when µ1 and µ2 have equal
or opposite sign, the instability will lead respectively to
aggregation or separation of the two species. Combining
these criteria we can construct a stability diagram for the
binary mixture, although we must distinguish between
two qualitatively-different kinds of mixtures: those of one
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FIG. 2. (a) Stability diagram for mixtures of one producer and one consumer species (cf. Fig. 1(a)), and (b) for mixtures
of two producer species (cf. Fig. 1(c)). In (a,b) the boxed legends attached to each quadrant symbolise the “interaction
network” representing the sign of interactions between each species in the system, as described in the main text. Phase
separation (aggregation in (a), separation in (b)) can be triggered by addition or removal of particles (density changes) only
when interactions between the two species are intrinsically non-reciprocal. (c) Stoichiometry at the onset of the instability,
obtained from 44 simulations (blue circles, see Table S1 in the Supplemental Material [24]) compared to the stability analysis
prediction (Eq. 2). (d) Time evolution of the stoichiometry of the biggest cluster arising from aggregation of (α1, α2) = (+,−)
mixtures, demonstrating that the long time stoichiometry is predicted by the neutrality rule (Eq. 3) and is independent of the
species’ mobility (blue: α̃2 = −1, µ̃2 = 8 and 12; red: α̃2 = −2, µ̃2 = 4 and 8; green: α̃2 = −3, µ̃2 = 3 and 5; in all cases
N1 = 800, N2 = 200, α̃1 = µ̃1 = 1).

producer and one consumer species, see Fig 2(a) where
we have chosen (α1, α2) = (+,−) without loss of general-
ity; and those of two producer species, see Fig 2(b). The
case of two consumer species is related to the latter by
the symmetry (µ1, µ2) → −(µ1, µ2); see Fig. S1 in the
Supplemental Material [24]. In this way, the parameter
space for each type of mixture can be divided into regions
leading to homogeneous, aggregated, or separated states,
which correspond directly to those observed in simula-
tions; compare Fig 2(a,b) to Fig. 1(a,c). We note, how-
ever, that while for (α1, α2) = (+,−) mixtures the simu-
lations are always seen to match the predicted phase be-
haviour, for (α1, α2) = (+,+) mixtures we have observed
separation even when the continuum theory predicts the
homogeneous state to be linearly stable, although pro-
ceeding much more slowly (see movie 7 in the Supplemen-
tal Material [24]), indicating that in this region separa-
tion may be occurring through a nucleation-and-growth
process controlled by fluctuations. This is denoted as the
shaded gray region extending past the instability line in
Fig 2(b).

The wide variety of phase separation phenomena aris-
ing in these mixtures is intimately related to the active,
non-reciprocal character of the chemical interactions. In
particular, it is useful to consider the sign of both inter-
species as well as intra-species interactions (as described
above, species i is attracted to or repelled from species j

when µiαj is negative or positive, respectively). In the
stability diagrams in Fig. 2(a,b), we find that each quad-
rant corresponds to a distinct “interaction network” be-
tween species, as depicted in the boxed legends attached
to every quadrant (as an example, the top-right interac-
tion network in (a) can be read as “1 is attracted to 2, 2
is repelled from 1, 1 is repelled from 1, and 2 is attracted
to 2”). We find that only three regions in the parame-
ter space have passive analogs: (i) The bottom-right of
(a) corresponds to electrostatics with opposite charges,
where equals repel and opposites attract, allowing for the
formation of small active molecules as studied in Refs. 7
and 8. (ii) The top-right of (b) corresponds to electrostat-
ics with like charges, where all interactions are repulsive
leading to a homogeneous state. (iii) The bottom-left of
(b) corresponds to gravitation, where all interactions are
attractive. The top-left of (a) can be thought of as the op-
posite of electrostatics (or as gravitation including a neg-
ative mass species), where equals attract and opposites
repel. The remaining four quadrants involve intrinsically
non-reciprocal interactions where one species chases af-
ter the other: in (a), a self-repelling species chases after
a self-attracting species; whereas in (b), a self-attracting
species chases after a self-repelling species. Importantly,
we observe that the most non-trivial instances of phase
separation, which are also those that can be triggered
simply by density changes (e.g. by addition or removal
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FIG. 3. Phase separation induced by a small amount of an
active “doping agent”. (a) Simulation snapshots showing
macroscopic aggregation of a previously homogeneous mix-
ture (N1 = N2 = 500, α̃1 = µ̃1 = 1, α̃2 = −1, µ̃2 = 1/2)
after addition of 5 % of a third species (N3 = 50, α̃3 = −5,
µ̃3 = 2), compare movies 1 and 10 in the Supplemental Mate-
rial [24]. (b) Time evolution of the size of the largest cluster
(total number of particles), in the absence and presence of the
third species.

of particles), occur in regions with such chasing inter-
actions, which are in turn a direct signature of non-
equilibrium activity.

Fourier analysis [24] of the simulation results (44 sim-
ulations with varying Ni, αi, and µi; see Table S1 in the
Supplemental Material [24]) agrees quantitatively with
the theoretical prediction (2) for the stoichiometry at the
onset of the instability; see Fig. 2(c). However, this initial
value is not representative of the long-time stoichiometry
of the phases. For (α1, α2) = (+,+) mixtures, shown in
Figs. 1(c) and 2(b), we always observe final configura-
tions with either complete aggregation or separation of
the two species. For (α1, α2) = (+,−) mixtures, shown
in Figs. 1(a) and 2(a), we always observe complete sep-
aration, but aggregation in this case leads to a cluster
with non-trivial stoichiometry (Fig. 1(a), centre). Phe-
nomenologically, we observe that the formation of such
clusters proceeds by fast initial aggregation of the parti-
cles of the self-attractive species (αiµi < 0) followed by
slower recruitment of particles of the self-repelling species
(αiµi > 0) until the cluster is chemically “neutral”, in the
sense that its net consumption or production of chemicals
vanishes, namely

α1N
clu
1 + α2N

clu
2 = 0, (3)

where N clu
i is the number of particles of species i in the

cluster. The long-time stoichiometry of the clusters thus
depends on the activity of the species, but it is inde-
pendent of their mobility; see Fig. 2(d). An intuitive
explanation for this observation can be provided as fol-
lows: once the cluster becomes neutral, the remaining
self-repelling particles will no longer “sense” its presence
and stay in a dilute phase. However, at high values of
activity and mobility for the self-attractive species, deep
inside the instability region, these static neutral clus-
ters can become unstable via shape-symmetry breaking
towards a self-propelled asymmetric cluster (Fig. 1(b)),
which also involves the “shedding” of some of the self-
repelling particles; see Fig. S3 and movies 8 and 9 in
the Supplemental Material [24]. Finding a precise cri-
terion for this symmetry-breaking to occur remains an
open question, but we note that the manifestation of self-
propulsion by the clusters is an intrinsically nonequilib-
rium feature.

Going beyond binary mixtures (M > 2), the phase
separation phenomenology becomes even more complex
due to the increasing number of parameter combinations,
leading to a large variety of possible interaction networks
between the different species. The instability condition
(1) remains extremely useful, however. As a first exam-
ple, in Fig. 3 we demonstrate how a small amount of a
highly active “dopant” third species can be added to an
otherwise homogeneous binary mixture in order to trig-
ger macroscopic phase separation of the whole mixture
on demand; see also movie 10 in the Supplemental Mate-
rial [24]. As a second example, we have simulated highly
polydisperse mixtures made up of 20 different species
with activities and mobilities randomly chosen in the in-
tervals −2 ≤ α̃i, µ̃i ≤ +2 for each species; see Fig. 1(d)
and movies 11 and 12. We find that the instability cri-
terion (1) can rather reliably distinguish between phase-
separating and homogeneous mixtures; see Fig. S4 in the
Supplemental Material [24]. We note that while all mix-
tures we predicted to phase-separate did so, some mix-
tures for which we predicted a linearly-stable homoge-
neous state were observed to phase-separate, albeit more
slowly, once again pointing to a nucleation-and-growth
mechanism rather than to a linear instability.

We have presented here a minimal model for phase sep-
aration in mixtures of chemically-interacting particles,
and the generic phenomena that we predict should be
applicable to a wide variety of systems. In the context
of morphogenesis and collective migration in bacterial
colonies and cells in tissues, the prediction of a transition
between static and self-propelled clusters is particularly
interesting. Here, it is important to take into account
that what we call here “two species” may also represent
a single species in two distinct states, each with different
chemical activity or chemotactic behaviour. Regarding
metabolon formation by enzymes in catalytic pathways,
our prediction of “neutral” clusters (Eq. 3) is most in-
triguing, as it would correspond to a cluster in which
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one enzyme channels all of its product to be taken as
substrate by the next enzyme, with no substrate missing
or in excess. Finally, our predictions can be tested in
detail in experiments using synthetic catalytic colloids,
by systematically varying the sign and magnitude of the
chemical activity, as well as the concentration of the dif-
ferent species. In future work, it will be interesting to
characterize in more detail the non-equilibrium activity
of the system by means of its energy dissipation or en-
tropy production [38, 39]. Moreover, we note that in our
simulations we have neglected hydrodynamic interactions
between particles as well as near-field contributions in the
chemical concentrations [24]. While we we do not expect
our results for the onset and stoichiometry of the instabil-
ity to change, the detailed dynamics of aggregation and
growth of the clusters as well as their internal dynamics
will be affected by these additional effects.
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