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Recent advances in the development of Josephson scanning tunneling spectroscopy (JSTS) have
opened a new path for the exploration of unconventional superconductors. We demonstrate that the
critical current, Ic, measured via JSTS, images the spatial form of the superconducting order pa-
rameter in dx2−y2 -wave superconductors around defects and in the Fulde-Ferrell-Larkin-Ovchinnikov
state. Moreover, we show that Ic probes the existence of phase-incoherent superconducting correla-
tions in the pseudo-gap region of the cuprate superconductors, thus providing unprecedented insight
into its elusive nature. These results provide the missing theoretical link between the experimentally
measured Ic, and the spatial structure of the superconducting order parameter.

Visualizing the spatial structure of the order parame-
ter in unconventional dx2−y2-wave superconductors rep-
resents a crucial step towards discovering the microscopic
origin of their complex properties. To achieve this goal,
experimental efforts have focused on the development of
Josephson scanning tunneling spectroscopy (JSTS) [1–8].
The assumption underlying JSTS is that the Josephson
current, IJ , [9] flowing between a superconducting JSTS
tip and a superconductor is proportional to the local or-
der parameter of the latter [10], even if it varies on the
length scale of a few lattice constants. A proof of this
assumption, which until now has been lacking for un-
conventional superconductors [11], would open unprece-
dented possibilities for the application of JSTS: it would
allow one to gain insight not only into the response of the
superconducting order parameter (SCOP) to defects and
disorder, but also into its much anticipated form in the
magnetic field induced Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [12–16]. Moreover, JSTS could be em-
ployed as a probe for superconducting correlations in
the pseudo-gap (PG) region of the cuprate superconduc-
tors [1, 17, 18], thus shedding light on the question of
whether the PG arises from a pair-density-wave (PDW)
[19–23] or phase-incoherent superconducting fluctuations
[24–27]. Indeed, recent JSTS experiment in the cuprate
superconductor Bi2Sr2CaCu2O8+x by Hamidian et al. [6]
argued that the observed spatial oscillations in the crit-
ical current, Ic, provide evidence for the existence of a
PDW. However, a complication in interpreting these ex-
periments, and in identifying the relation between Ic and
the SCOP arises from the fact that the non-local nature
of the SCOP in dx2−y2-wave superconductors requires the
use of spatially extended JSTS tips.

While conventional scanning tunneling microscopy ex-
periments, using a normal STM tip, have been able to
extract the bulk superconducting order parameter from
the energy position of the coherence peaks in the differ-
ential conductance, they have failed to detect any local
variations of the SCOP near defects [2, 6, 8, 29–31]. In-
deed, it was found experimentally that the position of
the coherence peaks remains unchanged even in the im-

mediate vicinity of defects [6, 8, 31]. The reason behind
the robust peak position is that the spatial variations of
the SCOP occur over length scales that are much smaller
than the coherence length [28–30]. Thus, while a defect
can lead to the transfer of spectral weight from the co-
herence peaks to impurity states, it cannot change the
energy position of the coherence peaks which are still de-
termined by unperturbed bulk states [29, 30] within a
coherence length of the defect.

In this article, we provide the theoretical proof that
the Josephson current measured via JSTS can provide
direct insight into the spatial structure of the SCOP
in dx2−y2-wave superconductors, and into the existence
of superconducting correlations in the PG regime of
the cuprate superconductors. Using a Keldysh non-
equilibrium Green’s function formalism [32, 33], we
demonstrate that the Josephson current, Ic, flowing
from a spatially extended superconducting JSTS tip with
dx2−y2 -wave symmetry, into a dx2−y2-wave superconduc-
tor [schematically shown in Fig. 1(a)] images the spatial
structure of the SCOP (averaged over an area of the size
of the tip) in the latter. Thus, for sufficiently small tip
sizes, it is possible to gain insight into the spatial struc-
ture of the SCOP on the atomic length scale. This allows

FIG. 1. (a) Schematic picture of Cooper-pair tunneling in a
dx2−y2 -wave superconductor from a spatially extended (2×2)
JSTS tip. (b) Spatial structure of the SCOP in a dx2−y2 -wave
superconductor with red/blue bonds representing the SCOP
±∆0 between nearest-neighbor sites.
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one to visualize the response of the SCOP to defects, and
to image its long sought spatial structure, including a sign
change, in the FFLO phase. Moreover, as a non-zero Ic
only requires the existence of local superconducting cor-
relations and not of global phase coherence, we predict
that a finite Ic should be measured in the PG region
of the cuprate superconductors if the latter arises from
phase-incoherent superconducting pairing. These results
demonstrate that JSTS possesses unprecedented poten-
tial for gaining insight into the spatial nature of strongly
correlated, unconventional superconductivity.

The starting point for investigating the relation be-
tween the spatial form of the critical Josephson current
and the SCOP in dx2−y2 -wave superconductors is the
Hamiltonian H = Hs +Htip +Htun where

Hs =−
∑
r,r′,σ

trr′c
†
rσcr′σ − µ

∑
r,σ

c†rσcrσ

−
∑
r,r′

[
∆rr′c

†
r,↑c
†
r′,↓ +H.c.

]
+ U0

∑
σ

c†RσcRσ

− gµB
2

H ·
∑
r,α,β

c†r,ασα,βcr,β (1)

Here, −trr′ is the electronic hopping between sites r
and r′ in the superconductor, µ is the chemical poten-
tial, and c†rσ (crσ) creates (annihilates) an electron with
spin σ at site r. ∆rr′ is the non-local (bond) SCOP
with dx2−y2-wave symmetry, which is non-zero only be-
tween nearest-neighbor sites and changes sign between
the x- and y-directions, i.e, ∆rr′ = ±∆0, as shown in
Fig. 1(b) for a translationally invariant system. U0 is the
scattering potential of a non-magnetic defect located at
R and the last term represents the Zeeman coupling in
a Pauli-limited superconductor, necessary to create the
FFLO phase [34, 35]. We employ a set of parameters
that is characteristic of the cuprates’ electronic struc-
ture with next-nearest-neighbor hopping t′/t = −0.4,
and µ/t = −1.

To account for spatial oscillations of the SCOP, we
compute it self-consistently via

∆rr′ = −Vrr
′

π

∫ ∞
−∞

dω nF (ω)Im[Fsc(r
′, ↓; r, ↑, ω))] (2)

where Vrr′ is the superconducting pairing potential be-
tween nearest-neighbor sites, nF (ω) is the Fermi distribu-
tion function, and Fsc is the non-local, retarded anoma-
lous Green’s function of the dx2−y2 -wave superconductor
[see Supplemental Material (SM) Sec. I]. We model the
JSTS tip as a spatially extended dx2−y2-wave supercon-
ductor with (nx × ny) sites [see Fig. 1(a)], described by
the Hamiltonian Htip = Hn

tip + Hsc
tip, where Hn

tip repre-
sents the normal state electronic structure of the tip (see

SM Sec. I), and

Hsc
tip = −

∑
r,r′

∆t
rr′d
†
r↑d
†
r′↓ +H.c. (3)

where ∆t
rr′ = ±∆tip is the tip’s superconducting dx2−y2-

wave order parameter, d†σ (dσ) create (annihilate) an elec-
tron with spin σ in the tip, and the sum runs over all tip
sites. Finally, the tunneling Hamiltonian is given by

Htun = −t0
∑
r,σ

c†rσdrσ +H.c. (4)

where r denotes sites both in the tip and the dx2−y2 -wave
superconductor between which electrons can tunnel.

A DC Josephson current, IJ [9], between the JSTS tip
and the superconductor arises from a phase difference,
∆Φ, between their SCOPs, which can be gauged away
[36], yielding real SCOPs and a phase-dependent tunnel-
ing amplitude tT = t0e

i∆Φ/2. Using the Keldysh Green’s
function formalism [32, 33], one obtains IJ = I↑J + I↓J to
lowest order in the hopping tT [36] as

IσJ = 4
e

~
t20 sin (∆Φ)

∫
dω

2π
nF (ω)

×
∑
r,r′

Im[Ft(r, σ; r′, σ̄, ω)Fsc(r
′, σ̄; r, σ, ω)] (5)

where Ft is the retarded anomalous Green’s function of
the tip (see SM Sec. I), and the sum runs over all sites
r, r′ in the tip and superconductor that are connected
by a tunneling element. Finally, IJ = Ic sin (∆Φ) with
Ic being the critical Josephson current. Note that while
∆rr′ is non-zero for nearest-neighbor sites only, Fsc is
non-zero for further neighbor sites, which therefore need
to be included in the summation in Eq.(5).

Before discussing the characteristic features of Ic in
the pseudo-gap region of the cuprate superconductors, we
first consider its hallmark signatures in a fully phase co-
herent dx2−y2-wave superconductor. We begin by investi-
gating the spatial form of the SCOP near a non-magnetic
defect, which gives rise to the emergence of an impurity
resonance in the local density of states (LDOS) [37–42],
as shown in Fig. 2(a). At the same time, the defect also
induces spatial oscillations in the SCOP [see Figs. 2(b)
and (c)], which cannot be measured via conventional
scanning tunneling spectroscopy [6, 8]. In Fig. 2(b), we
present the spatial form of the critical current, Ic, for a
tip that consists of 2 sites, which is the smallest possible
tip size that still exhibits non-local dx2−y2-wave correla-
tions. The tip is aligned either along the x- or y-direction,
representing a (2 × 1) or (1 × 2) tip, respectively. The
resulting Ic probes the superconducting correlations be-
tween nearest-neighbor sites only, thus providing direct
insight into the non-local bond SCOP. The spatial form
of Ic for ∆tip = 4∆0 agrees very well with that of the
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FIG. 2. (a) LDOS in a clean system and at the site of a
defect with U0 = 1.5t. (b) Normalized ∆(r, r′) and Ic for a
(2×1)/(1×2) tip plotted at (r+r′)/2 along a linecut through
the defect site for ∆tip = 4∆0. I0c is the Josephson current in
the unperturbed system. (c) Spatial plot of ∆(r, r′) and (d)
Ic for ∆tip = ∆0 and T = 0.

SCOP [Fig. 2(b)] implying that the spatial structure of
an unconventional dx2−y2 -wave order parameter can be
spatially imaged by the critical current. This good agree-
ment is independent of the particular magnitude of the
SCOP in the tip, as follows from a comparison of the spa-
tial structure of the SCOP [Fig. 2(c)] and of Ic [Fig. 2(d)]
for ∆tip = ∆0. The wavelength of the oscillations along
the x/y-axis both in ∆(r, r′) and Ic is approximately 4a0

[Fig. 2(b)], which is close to that observed by Hamid-
ian et al. [6]. This wavelength arises from scattering of
electrons between the nearly parallel parts of the Fermi
surface near (0,±π) and (±π, 0). Finally, we note that
the energy position of the coherence peaks, as measured
with a normal STM tip in conventional dI/dV , remains
unchanged in the vicinity of the defect, and hence does
not reflect the local SCOP (for a more detailed discus-
sion, see SM Sec. II)

While the above results were obtained with the small-
est possible tip size still exhibiting dx2−y2-wave correla-
tions, the JSTS tip employed by Hamidian et al. [6],
was created by picking up a nanometer-sized flake of
Bi2Sr2CaCu2O8+x with a tungsten tip. This immedi-
ately brings into question to what extent the critical cur-
rent Ic measured by such a spatially extended JSTS tip
can still image the “local” SCOP. To investigate this cru-
cial question, we compare in Fig. 3 the critical current
measured by several spatially extended JSTS tips of dif-
ferent sizes, with the SCOP averaged over the area cov-
ered by the tip, 〈∆〉r. We find as expected that with
increasing tip size, the agreement between the Ic and the
bond SCOP between nearest neighbor sites (at the center
of the tip) worsens [cf., for example, ∆(r, r′) in Fig. 2(b)

FIG. 3. Comparison of Ic(r), with r being the center of the
tip, and the spatially averaged SCOP 〈∆〉r for (a) (2 × 2),
(b) (3× 3), (c) (5× 5), and (d) (11 × 11) JSTS tips (the tip
sizes are shown as insets). 〈∆〉r is calculated by averaging the
magnitude of ∆rr′ over the region covered by the JSTS tip.

with Ic in Fig. 3(c)]. However, the agreement between
the spatial form of Ic and the averaged SCOP 〈∆〉r re-
mains very good, as shown in Fig. 3. Moreover, even for
a large (5× 5) tip [Fig. 3(c)] (which is approximately the
size of flake of Bi2Sr2CaCu2O8+x used by Hamidian et
al. [6]) the λ = 4a0 spatial oscillations are still visible.
As with increasing tip size, the contribution to Ic from
nearly unperturbed areas increases even when the tip is
centered above the defect, the relative spatial variation
of Ic around the defect becomes weaker, as follows from
Figs. 3(a)-(d). Thus, while with increasing tip size, Ic
does not any longer image the spatial structure of the
bond order parameter, ∆(r, r′), it nevertheless provides
insight into the form of the spatially averaged SCOP. We
note that this result is largely robust against disorder in
the tunneling amplitude (see SM Sec. III), and thus also
holds for disordered tips.

The magnetic-field induced Fulde-Ferrell-Larkin-
Ovchinikoff phase represents another example for a
phase in which the SCOP exhibits characteristic spatial
oscillations. Such a phase might be realised in the
heavy fermion superconductor CeCoIn5 [14–16], which
was argued to possess a superconducting dx2−y2 -wave
symmetry [43, 44]. Solving Eq. (2) for ∆rr′ in the
presence of a magnetic field, we find that the SCOP
shows sinusoidal spatial oscillations accompanied by a
sign change [see Figs. 4(a) and (b)], reflecting a non-zero
center-of-mass momentum of the Cooper pairs in the
FFLO phase [34, 35]. As current JSTS experiments can
measure only the magnitude of Ic, but not IJ itself, we
compare in Figs. 4(c) and (d) the spatial structures of
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FIG. 4. (a) ∆(r, r′) in the FFLO phase for gµBH/2 = 0.1t.
(b) Linecut of ∆(r, r′) and Ic = I↑c +I↓c along the black dashed
line in (a) with ∆tip = ∆0. (c) Modulus of ∆(r, r′) and (d)
Ic for a (2× 1)/(1× 2) tip.

the modulus of ∆(r, r′) and Ic, which show very good
agreement. Moreover, a linecut of the SCOP and Ic
in Fig. 4(b) reveals that the sign change in ∆(r, r′)
leads to a characteristic | sin(kr)| structure in Ic. Thus
the measured Ic does not only reflect |∆(r, r′)|, but
its spatial form can also detect sign changes in the
SCOP. These results, taken together, show for the first
time that it is possible to detect the presence of the
FFLO phase, and reveal its much anticipated spatial
SCOP structure via JSTS. Finally, we note that the
Zeeman-splitting of the spin-↑ and spin-↓ bands [45] also
possesses a counterpart in Ic: its spin-↑ (I↑c ) and spin-↓
(I↓c ) contributions, shown by the dashed blue and green
lines in Fig. 4(b), respectively, are spatially split due to
the SCOP’s finite center-of-mass momentum.

As the measurement of the critical current is a local
probe, we expect that a non-zero Ic is measured as long
as a system exhibits local superconducting correlations.
As such, JSTS possesses the potential to probe the nature
of the pseudo-gap, and in particular, its proposed origin
arising from phase-incoherent superconducting correla-
tions (precursor pairing) [24–27]. To explore this pos-
sibility, we start from the observations of conventional
STS experiments [46–48] which reported the existence
of a heterogeneous, domain-like structure in the under-
doped cuprates at T � Tc: in one type of domain, the
LDOS exhibits all the traits of a dx2−y2 -wave supercon-
ductor with well defined coherence peaks (the SC region),
and one in which the gap appears larger than in the su-
perconducting regions, but in which the coherence peaks
are significantly broadened (the PG region). Below, we
model the pseudo-gap as arising from phase incoherent
superconducting correlations [26, 27], as characterized

FIG. 5. Theoretical (to-scale) model of the gap-map shown
in Fig.1a of Ref. [46]). (a) Spatial plot of ∆(r, r′) with τ−1

ph =

0.05t/~ for the PG regions (red) and τ−1
ph → 0 for the SC

regions (blue). (b) LDOS along the black dashed line in (a).
Blue (red) curves correspond to the SC (PG) regions. (c)
Averaged LDOS (see text) in the PG and SC regions. (d)
Spatial plot of Ic(r) for a (2× 1)/(1× 2) tip.

by a finite phase-coherence time τph, such that ∆(r, r′)
in the PG regions should be interpreted as a measure
for the bond superconducting correlations, rather than
a phase-coherent bond order parameter [26, 27]. To in-
vestigate the form of Ic in such a heterogeneous system,
we created a theoretical real-space (to-scale) model of
the experimental gap-map shown in Fig.1a of Ref. [46],
which reflects the existence of the two domains. The self-
consistently computed OP shown in Fig. 5(a) reproduces
well the spatial structure of the experimental gap-map
(for details, see SM Sec. IV). Note that in a heteroge-
neous system, the theoretical OP is in general not iden-
tical to the gap which is experimentally determined from
the position of the coherence peaks. In Fig. 5(b), we
show a line cut of the LDOS [along the black dashed line
in Fig. 5(a)], which exhibits the characteristic evolution
of the LDOS between the SC and PG regions also found
in STS experiments (see Fig.3a of Ref.[46]). To directly
compare our results with the spatially averaged experi-
mental dI/dV data (see Fig.3b in Ref.[48]), we present
in Fig. 5(c), the LDOS spatially averaged over the SC
and PG regions along the line cut in Fig. 5(a) [these re-
gions are defined by an OP that lies within the shaded
blue (SC) or red (PG) regions of the legend in Fig. 5(a),
respectively]. Our results reproduce a series of character-
istic traits exhibited by the experimentally averaged data
(see Fig.3b in Ref. [48]): (i) while the gap in the PG re-
gion is larger than in the SC region, the coherence peaks
in the PG region are smeared out,(ii) the LDOS in the
PG regions (red dashed line) exhibits shoulder-like fea-
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tures (see arrows) at the energies of the coherence peaks
in the SC regions, (iii) the shoulder-like feature is more
pronounced at positive than at negative energies, and (iv)
the spectra exhibit overall a strong particle-hole asymme-
try. All of these results are in good agreement with the
experimental findings, thus supporting the validity of the
model employed here. In Fig. 5(d), we present a spatial
plot of Ic obtained for the heterogeneous system shown
in Fig. 5(a). We again find that Ic spatially images the
OP, and that despite the incoherent nature of the PG re-
gion, the Josephson current in these regions is non-zero
(though Ic in the PG regions decreases with decreasing
τph). This implies that Ic indeed reflects the presence
of local superconducting correlations, rather than global
phase coherence. In contrast, if the PG were to arise
from non-superconducting correlations or order param-
eters, such as charge- or spin-density wave correlations,
Ic would vanish. Thus, a non-zero measurement of Ic in
the PG region would provide strong evidence for precur-
sor pairing as its origin.

In conclusion, we have shown that JSTS in unconven-
tional dx2−y2-wave superconductors provides unprece-
dented insight into the spatial form of the SCOP not only
near defects but also in the magnetic-field induced FFLO
phase. While it is possible to image the bond SCOP for
sufficiently small JSTS tip sizes, we find more generally
that the spatial form of Ic images that of the SCOP aver-
aged over the size of the tip. Moreover, we showed that
in the FFLO phase, JSTS does not only map the spa-
tial variations in the magnitude of the SCOP, but also
visualizes its sign change. Finally, we demonstrated that
JSTS can detect the presence of phase-incoherent super-
conducting correlations, thus providing insight into the
potential origin of the PG from precursor pairing and
discriminating it from other proposed mechanisms.
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[7] B. Jäck, M. Eltschka, M. Assig, M. Etzkorn, C. R. Ast,
and K. Kern, Phys. Rev. B 93, 020504(R) (2016).

[8] M. T. Randeria, B. E. Feldman, I. K. Drozdov, and A.
Yazdani, Phys. Rev. B 93, 161115(R) (2016).

[9] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[10] V. Ambegaokar and V. Baratoff, Phys. Rev. Lett. 10,

486 (1963).
[11] M. Graham and D.K. Morr, Phys. Rev. B 96, 184501

(2017).
[12] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[13] A. J. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor.

Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[14] A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, and

J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003).
[15] H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Han-

nahs, E. C. Palm, S. W. Tozer, and D. Hall, Nature 425,
51 (2003).

[16] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76,
051005 (2007).

[17] N. Bergeal, J. Lesueur, M. Aprili, G. Faini, J. P. Contour,
and B. Leridon, Nature Physics 4, 608 EP (2008).

[18] T. Jacobs, S. O. Katterwe, and V. M. Krasnov, Phys.
Rev. B 94, 220501 (2016).

[19] H.-D. Chen, O. Vafek, A. Yazdani, and S.-C. Zhang,
Phys. Rev. Lett. 93, 187002 (2004).

[20] E.Berg, E. Fradkin, and S.A.Kivelson, Nat. Phys. 5, 830
(2009).

[21] P. A. Lee, Phys. Rev. X 4, 031017 (2014).
[22] E. Fradkin, S. A. Kivelson, J. M. Tranquada, Rev. Mod.

Phys. 87, 457 (2015).
[23] Y. Wang, D.F. Agterberg, A. Chubukov, Phys. Rev. Lett.

114, 197001 (2015).
[24] V. J. Emery, S. A. Kivelson, Nature 374, 434 (1995).
[25] M. Franz, A. J. Millis, Phys. Rev. B 58, 14572 (1998).
[26] Q. J. Chen et al., Phys. Rep. 412, 1 (2005).
[27] D. Wulin, Y. He, C.-C. Chien, D.K. Morr, and K. Levin,

Phys. Rev. B 80, 134504 (2009).
[28] A.L. Fetter, Phys. Rev. 140, A1921 (1965).
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