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We theoretically investigate the nature of the state at quarter filled lowest Landau level and predict
that, as the quantum well width is increased, a transition occurs from the composite fermion Fermi
sea into a novel non-Abelian fractional quantum Hall state that is topologically equivalent to f -wave
pairing of composite fermions. This state is topologically distinct from the familiar p-wave paired
Pfaffian state. We compare our calculated phase diagram with experiments and make predictions
for many observable quantities.

The Moore-Read (MR) Pfaffian model [1] for the even-
denominator fractional quantum Hall effect (FQHE) at
filling factor ν = 5/2 [2] predicts Majorana excitations
that are neither fermionic nor bosonic but obey non-
Abelian braid statistics [3]. This follows most directly
from the understanding that the MR wave function rep-
resents a topological chiral p-wave “superconductor” of
composite fermions [3], which themselves are emergent
particles formed from the binding of electrons and quan-
tized vortices [4, 5]. Quasiparticle tunneling [6], quasi-
particle interference [7, 8], and thermal Hall [9, 10] ex-
periments have sought to measure the Majorana excita-
tions, but the observations are not fully consistent with
the predictions arising from either the Pfaffian [1] or its
hole conjugate called the anti-Pfaffian [11, 12]. Realiza-
tion of other non-Abelian states will therefore not only be
fundamentally interesting in its own right, but can help
provide an unambiguous demonstration of non-Abelian
anyons. We predict in this Letter that the FQHE state
observed at ν = 1/4 in wide quantum wells (WQWs) [13–
16] provides a realization of a new type of non-Abelian
state [17, 18] that is topologically distinct from the (anti-
)Pfaffian state. We make detailed predictions for several
topological properties of this state that are measurable
by currently available experimental techniques.

The ν = 1/4 state of our interest belongs to a large
class of states appearing within the parton theory of the
FQHE [17, 18]. Here one divides each electron into k
fictitious particles called partons, places each species of
parton into an integer quantum Hall effect (IQHE) state
with filling nλ, and then glues the partons back together
to recover the physical electrons. This leads to candidate
“n1n2 · · ·nk” FQHE states [17, 18]:

Ψn1n2···nk = PLLL

k∏
λ=1

Φnλ({zi}). (1)

Here Φn is the wave function of the IQHE state with n
filled Landau levels (LLs), {zi = xi− yi} are electron co-

ordinates, and PLLL represents projection into the lowest
LL (LLL). Negative values of n are denoted as n̄, with
Φ−n = Φn̄ ≡ [Φn]∗ being the wave function of |n| filled
LL state in a negative magnetic field. To ensure equal
area for each parton species, the charge is given by eλ =
ν/nλ in units of the electron charge, with

∑k
λ=1 eλ = 1.

The candidate wave function Ψn1n2···nk represents an in-

compressible state at filling factor ν =
[∑k

λ=1 n
−1
λ

]−1

.

Remarkably, even though the partons themselves are un-
physical, they leave their footprints in the physical world;
for example, an excited parton in the factor Φnλ produces
a charge eλ excitation in the physical state. A field the-
oretical description of these states was constructed by
Wen and collaborators [19–22].

The familiar wave functions of the composite-
fermion (CF) theory Ψν=n/(2pn+1) = PLLLΦnΦ2p

1 and

Ψν=n/(2pn−1) = PLLLΦn̄Φ2p
1 are obtained as n11 · · · and

n̄11 · · · states. The parton theory contains states be-
yond the CF theory. Wen showed [21] that the Jain
parton states of the form Ψnn···

ν=n/k = [Φn]k with n ≥ 2
and k ≥ 2 are non-Abelian. For these states, because
all k partons are identical, the theory must be invari-
ant under an SU(k) rotation within the internal parton
space. Imposing this constraint through a non-Abelian
gauge field and integrating out the partons leads to an
SU(k)n Chern-Simons theory, which implies that the un-
derlying states hosts non-Abelian quasiparticles. Wen
showed [21] that the [Φn]k state has chiral central charge
c = n(kn+1)/(k+n). In particular, the bosonic 22 state
at ν = 1 has c = 5/2. Other states that contain factors
of [Φn]k also support non-Abelian quasiparticles for the
same reason. The electron states 221 at ν = 1/2 and
22111 at ν = 1/4, described by U(1) × SU(2)2 Chern-
Simons theory, also are non-Abelian with c = 5/2.

All wave functions in Eq. (1) are in principle valid
candidates for FQHE, but the important question is
which ones occur for realistic interactions. Extensive
work has shown that the LLL primarily stabilizes com-
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posite fermions. For states beyond the CF theory, one
must therefore look to higher LLs, to monolayer or bi-
layer graphene, or to systems in WQWs, all of which
have different Coulomb matrix elements than purely two-
dimensional electrons in the LLL. The simplest non-
Abelian parton state, namely the 221 state at ν =
1/2 [17, 18, 21, 23, 24], is not a satisfactory candidate
for the ν = 1/2 FQHE in the second LL, i.e., the 5/2
FQHE, because exact diagonalization does not produce
an incompressible state at the corresponding “shift” [25].
Recently, Balram, Barkeshli and Rudner [26] have shown
the surprising result that the seemingly more complicated
2̄2̄111 state provides a rather good representation of the
Coulomb ground state at ν = 5/2, although the 2̄2̄111
state happens to lie in the same universality class as the
anti-Pfaffian state. There are indications that the 221
state may be relevant to 1/2 FQHE in bilayer graphene
for appropriate parameters [23] and to the n = 3 LL of
monolayer graphene [27].

We now come to FQHE at ν = 1/4 in WQWs. Which
state occurs as the ground state is an energetic question.
We consider the following candidate states:

ΨCFFS = PLLLΦFermi seaΦ4
1 (2)

ΨPf = Pf

(
1

zi − zj

)
Φ4

1 (3)

ΨPf l=3 = Pf

(
1

(zi − zj)3

)
Φ4

1 (4)

Ψ22111 = PLLLΦ2Φ2Φ3
1 ∼

[PLLLΦ2Φ2
1]2

Φ1
=

Ψ2
2/5

Φ1
(5)

Ψ2̄2̄11111 = PLLL[Φ∗2]2Φ5
1 ∼ [PLLLΦ∗2Φ2

1]2Φ1 = Ψ2
2/3Φ1.

(6)
These represent the compressible CF Fermi sea
(CFFS) [28, 29], the MR Pfaffian state [1], an l = 3 pair-
ing Pfaffian state, the 22111 state, and the 2̄2̄11111 state.
(We assume throughout this work that the magnetic field
B is large enough to freeze the spin degree of freedom.)
The Pfaffian of an antisymmetric matrix Mi,j is defined
as Pf(Mi,j) ∼ A(M1,2M3,4 · · ·MN−1,N ) with A repre-
senting antisymmetrization. The 22111 and 2̄2̄11111
states are projected into the LLL as shown above; this
form allows the Jain-Kamilla projection [30, 31] to obtain
the LLL states for up to 40 and 36 particles, respectively,
in the spherical geometry [32] (see Supplemental Mate-
rial (SM) [33] accompanying this paper). Particle-hole
(PH) symmetry implies that the anti-Pfaffian state has
the same energy as the Pfaffian state. We do not con-
sider the so-called PH-Pfaffian state [38] because its wave
function PLLLPf( 1

z∗i−z∗j
)Φ4

1 [26, 39–41] is not amenable to

calculations for large systems, precluding a reliable ther-
modynamic limit for the energy.

The 22111 state is topologically distinct from the Pfaf-
fian, anti-Pfaffian and the PH-Pfaffian states, which have
chiral central charges of c = 3/2, −1/2, and 1/2, re-
spectively. Nevertheless, while ΨPf and ΨPf l=3 rep-
resent CF pairing in an obvious manner, the 22111
and 2̄2̄11111 states are also paired states of composite
fermions [3, 11, 12, 26, 38], which can be seen as fol-
lows. At filling fraction ν = 1/4, a natural set of FQHE
states to consider correspond to attaching 4 vortices to
each electron to obtain a composite fermion that sees
zero magnetic field on average. In the parton construc-
tion this amounts to writing the electron operators as
℘ = bψ, where b is a boson that forms a νb = 1/4
bosonic Laughlin FQHE state, while ψ is the compos-
ite fermion. If we specialize to the case where ψ forms a
paired state, we can consider any odd ` angular momen-
tum pairing. This leads to wave functions of the form
ΨCF−paired
` = Ψpaired

` Φ4
1, where Ψpaired

` is the wave func-
tion of an angular momentum ` paired superconductor
of spinless fermions. ΨCF−paired

` describes a state with
central charge c = `/2 + 1. The edge theory consists of `
chiral Majorana modes, together with a charge mode de-
scribed by a single chiral boson. Because there is a unique
topological quantum field theory with Ising quasiparticles
for a given chiral central charge [42], it follows that the
22111, the Pfaffian, the PH-Pfaffian and the anti-Pfaffian
(or 2̄2̄11111) states are topologically equivalent, respec-
tively, to ` = 3, 1, −1, and −3 paired states of composite
fermions (Table I). In particular, the 22111 state cor-
responds to an f -wave superconductivity of composite
fermions [26]. The 22111 state and ΨPf l=3 represent two
different choices for the f -wave pair wave functions; while
topologically equivalent, these two states are microscop-
ically very different, as seen below.

Since FQHE at ν = 1/4 is seen only in a WQW, it
is crucial to incorporate into the calculation the varia-
tion in the interaction due to transverse wave function
ξ(x) of the electrons in a realistic fashion, where x is
the transverse coordinate. We determine ξ(x) via the lo-
cal density approximation (LDA) [43] for a given width
and electron density at zero magnetic field (see examples
in Fig. 1a). This results in a modified effective interac-

tion given by Veff(r) =
∫
dx1

∫
dx2

|ξ(x1)|2|ξ(x2)|2√
r2+|x1−x2|2

, where

r is the distance between the electrons within the plane.
All energies are quoted in units of e2/εl, where ε is the
dielectric constant of the background host material and
l =

√
~c/eB is the magnetic length.

The thermodynamic limits for the energies of various
candidate states as a function of density are plotted in
Fig. 1a for a quantum well of width 60 nm (see SM [33] for
details). (The energy of ΨPf l=3 is much higher than that
of other candidate states, typically by 0.1 e2/εl, and is
not shown.) From similar calculations at other quantum
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FIG. 1. Panel (a): Energies of several candidate states at ν = 1/4 as a function of density ρ for a quantum well of width 60
nm. The different states are labeled as shown on the figure. All energies are thermodynamic values, measured relative to the
energy of the Pfaffian state. Only the CFFS and 22111 states become ground states for the parameters studied. The inset
shows the electron density as a function of transverse position for densities 1.5 × 1011 cm−2 and 2.0 × 1011 cm−2 as given by
LDA for a quantum well of width 60 nm. Panel (b): The calculated phase diagram at ν = 1/4 as a function of the quantum
well width and density. In the region of parameter space shown in the figure only the CFFS and 22111 states are realized.
We also include experimental results, shown by black squares, taken from Refs. [13, 14]. Panel (c): Energies of several bilayer
states as a function of the layer separation d/l. We have studied 11 liquid states (Table II) and 24 crystal states (SM). Here we
omit the high energy states (see SM for more complete results) and show the energies of the (1/5, 1/5|3) state, the pseudospin
singlet CFFS, the pseudospin polarized CFFS, and several crystal states (notation explained in text). All energies are measured
relative to the (1/5, 1/5|3) state. No FQHE is stabilized.

well widths, we obtain the phase diagram presented in
Fig. 1b. For small widths and small densities, the CFFS
state dominates, but when the width and density are
made large enough, the 22111 state becomes the ground
state. The Pfaffian, anti-Pfaffian, or the 2̄2̄11111 states
are not realized in any part of the parameter space we
have studied. Fig. 1b also shows (solid squares), for two
QW widths, the densities where the 1/4 FQHE has been
first seen to appear in experiments [13–15].

A sufficiently wide quantum well can behave as a bi-
layer, which raises the question whether a two-component
FQHE state could also be competitive [44]. The follow-
ing considerations point to a single component state. (i)
The experimental onset of the 1/4 FQHE with increasing
width or density agrees well with the phase boundary ob-
tained in our single component calculation (Fig. 1a). (ii)
The competition between one and two-component states

State ` shift S αe αqp central charge c
CFFS – 4 – – –
22111 3 7 9 −1/8 5/2

Pfaffian(l = 3) 3 7 9 −1/8 5/2
Pfaffian 1 5 9 −5/8 3/2

PH Pfaffian −1 3 – – 1/2
2̄2̄11111 −3 1 – – -1/2

TABLE I. This table gives the shift S on the sphere, the
electron and quasiparticle tunneling exponents αe and αqp

(defined so that the tunnel current behaves as I ∼ V α), and
the chiral central charge c for several states at ν = 1/4. The
central charge and the shift are related to the thermal Hall
conductance and the Hall viscosity. Dashes indicate that the
quantity is not expected to be quantized to a universal value
due to the edge theory not being fully chiral or the bulk being
gapless.

depends sensitively on the gap ∆SAS separating the sym-
metric and the antisymmetric bands. A large ∆SAS favors
a one-component state. From the LDA calculation, the
value of ∆SAS at the phase boundary in Fig. 1b is ∼ 0.1,
0.08 and 0.06 e2/εl, respectively, for QWs of widths 50
nm, 60 nm and 70 nm. While seemingly small, ∆SAS is
large compared to typical Coulomb energy differences be-
tween competing states (e.g. the Coulomb energy differ-
ences are <0.005 e2/εl in Fig. 1a). For another two com-
ponent system, namely spinful electrons in a single layer,
the system in the vicinity of ν = 1/2 becomes fully po-
larized (i.e. single-component) when EZ & 0.01e2/εl for
WQWs [45, 46], where the Zeeman splitting EZ is analo-
gous to ∆SAS. It is therefore likely that two-component

Bilayer States at ν = 1/4
State wave function

(1/8CFFS, 1/8CFFS| 0) ΨCFFS
1/8 (z↑)ΨCFFS

1/8 (z↓)

(1/7, 1/7| 1) Φ7
1(z↑)Φ7

1(z↓)Πi,j(z
↑
i − z

↓
j )

(1/6CFFS, 1/6CFFS| 2) ΨCFFS
1/6 (z↑)ΨCFFS

1/6 (z↓)Πi,j(z
↑
i − z

↓
j )2

(1/5, 1/5| 3) Φ5
1(z↑)Φ5

1(z↓)Πi,j(z
↑
i − z

↓
j )3

singlet CFFS ΨCFFS
1/4 (z↑)ΨCFFS

1/4 (z↓)Πi,j(z
↑
i − z

↓
j )4

(1/4Pf , 1/4Pf |4) ΨPf
1/4(z↑)ΨPf

1/4(z↓)Πi,j(z
↑
i − z

↓
j )4

Pf ×(1/6, 1/6| 2) Pf( 1
zi−zj

)Φ6
1(z↑)Φ6

1(z↓)Πi,j(z
↑
i − z

↓
j )2

(1/6Pf , 1/6Pf | 2) ΨPf
1/6(z↑)ΨPf

1/6(z↓)Πi,j(z
↑
i − z

↓
j )2

polarized CFFS ΨCFFS(z↑, z↓)

polarized Pf ΨPf(z↑, z↓)

singlet 2↑↓2111 PLLLΦ1(z↑)Φ1(z↓)Φ2(z)Φ3
1(z)

TABLE II. Candidate liquid state wave functions at ν = 1/4
in a bilayer system. The coordinates z↑ and z↓ denote differ-
ent layers, while z denotes all coordinates. The terms singlet
and polarized refer to “layer polarization.”
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states are not relevant for ∆SAS ∼ 0.05− 0.10 e2/εl. (iii)
In the vicinity of ν = 1/4, the FQHE states and the CFFS
of spinful electrons are predicted to be single-component
(i.e. fully spin polarized) even for EZ = 0 [47, 48]. (iv)
Finally, we have considered an ideal bilayer system of
two two-dimensional systems separated by a distance d.
We have studied a total of 11 compressible and incom-
pressible liquid states (Table II) and 24 different crystal
states (SM). The crystal labeled BG(2p,m) refers to a
“Bilayer Graphene” crystal of composite fermions with
2p attached vortices, with m interlayer zeros; CS(2p,m)
refers to an analogous “Correlated Square” crystal [49].
For d = 0 the system is formally equivalent to that of
spinful particles in a single layer with zero Zeeman en-
ergy. Here, as mentioned above, the ground state is a
fully pseudospin polarized CFFS, which has lower ex-
change energy than the pseudospin singlet CFFS because
of exchange effects. We find, unexpectedly, that as d is
increased, a transition occurs into a pseudospin singlet
CFFS, which is followed by a sequence of correlated CF
crystals at larger d/l (see Fig. 1c). We thus predict that
no FQHE will occur at ν = 1/4 in a bilayer system. This
is consistent with current experiments in GaAs double
QW systems [50], and can be tested more accurately in
double layer graphene where a plethora of FQHE states
have recently been observed [51, 52].

These considerations make it plausible that the single-
component 22111 state is stabilized in WQWs. Nonethe-
less, a decisive confirmation requires further experimental
evidence, and in the remainder of this paper we outline
certain experimental consequences of the 22111 state.

The thermal Hall conductance of a FQHE sate is given
by c[π2k2

B/(3h)]T , where c is the central charge [53]. It
can thus decisively distinguish between different candi-
date states at ν = 1/4, as they have different values of c
(see Table I). An advantage of thermal Hall conductance
is that it is robust against edge reconstruction.

We next come to tunneling exponents. We first con-
sider quasiparticle tunneling at a quantum point contact
(QPC) separating two edges of the same quantum Hall
fluid. (See SM [33] for the properties of various quasi-
particles.) This tunneling is expected to be dominated
by the minimally charged quasiparticle carrying charge

1/8, given by the operator σeiϕ/2
√
ν−1

. For ` = 1, σ
is the usual Ising spin field; for general `, it is the pri-
mary field that changes the sign of the boundary con-
dition of each of the chiral Majorana fermions and has
scaling dimension `/16. The chiral boson ϕ carries the
charge. For ` > 0, the quasiparticle operator has scaling
dimensions (h, h̄) = (ν8 + `

16 , 0), where h and h̄ are the
left and right scaling dimensions. This implies that at
a QPC, the backscattering tunneling current would be
(with ν = 1/4) [22]

I ∝ V 4(h+h̄)−1 = V (`+2)/4−1 = V (2`−7)/8. (7)

For ` > 0, since the edge theory is fully chiral, these

exponents are quantized and universal due to charge
1/8 quasiparticles (in the absence of edge reconstruc-
tion). For ` < 0, this operator has scaling dimensions
(h, h̄) = (ν8 ,

`
16 ). In the unperturbed edge theory, we

would therefore expect I ∝ V 4(h+h̄)−1 = V (2|`|−7)/8.
However, since the theory is not fully chiral there are
marginal perturbations of the edge theory that can mod-
ify the scaling dimensions. Therefore for ` < 0 we do
not expect these exponents to be universal and thus not
quantized. In particular, we can consider perturbations
δL = iαij∂ϕηi∂ηj , for coupling constants αij , where
ηi for i = 1, · · · , ` are the chiral Majorana fermions.
These perturbations are marginal, having scaling dimen-
sion two, and can change the exponents of the quasipar-
ticle and the electron operators.

We next consider tunneling of an electron between two
distinct adjacent FQHE fluids. The edge theory has `
chiral Majorana fermions, ηi, for i = 1, · · · , `. We there-
fore have ` different types of electron operators: Ψe;i ∝
ηie

i
√
ν−1ϕ, and in general can consider a linear combina-

tion of the above operators: Ψe = ei
√
ν−1ϕ

∑`
i=1 aiηi+· · ·

where the ai are some constant coefficients for the ex-
pansion of the electron in terms of long wavelength field
operators, and · · · indicate higher order (less relevant)
operators in the expansion. For ` > 0, this operator
has scaling dimensions (h, h̄) = ( 1

2ν + 1
2 , 0), where where

h and h̄ are the left and right scaling dimensions. The
tunneling current behaves as

I ∝ V 4(h+h̄)−1 = V 9 (8)

For l < 0, this operator has scaling dimensions (h, h̄) =
( 1

2ν ,
1
2 ). While naively we would still get the same tunnel-

ing exponent, namely I ∝ V 4(h+h̄)−1 = V 9. As before,
for ` > 0 the exponent is quantized and universal (as-
suming no reconstruction) but not for l < 0.

One can similarly consider tunneling of an electron
from an external Fermi liquid [54–56]. In this case the
tunneling current becomes I ∝ V 2(h+h̄) = V 5.

Finally, we note that the Hall viscosity is conjectured
to be quantized at ηH = ~ρS/4, where S is the “shift”
in the spherical geometry [57] and ρ is the density. The
shifts for different candidate states are shown in Table I.

In summary, we have presented extensive calculations
that make a strong case that the ν = 1/4 FQHE in wide
quantum wells is the realization of a new kind of single-
component non-Abelian state that is topologically equiv-
alent to f -wave pairing of composite fermions. We have
listed many experimental consequences of this state. If
confirmed, it will provide a convenient new platform for
creating and studying non-Abelian anyons.
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