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Currently, quantum dynamics theory cannot be used for quantitative predictions of molecular
scattering observables at low temperatures, because of two problems. The first problem is the
extreme sensitivity of the low-temperature observables to details of potential energy surfaces (PES)
parametrizing the nuclear Schrödinger equation. The second problem is the large size of the basis
sets required for the numerical integration of the Schrödinger equation for strongly interacting
molecules in the presence of fields, which precludes the application of rigorous quantum theory to
all but a few atom - molecule systems. Here, we show that, if the scattering problem is formulated
as a probabilistic prediction, quantum theory can provide reliable results with exponentially reduced
numerical effort. Specifically, we show that the probability distributions that an observable is in a
certain range of values can be obtained by averaging the results of scattering calculations with much
smaller basis sets than required for calculations of individual scattering cross sections. Moreover,
we show that such distributions do not rely on the precise knowledge of the PES. This opens the
possibility of making probabilistic predictions of experimentally relevant observables for a wide
variety of molecular systems, currently considered out of reach of quantum dynamics theory. We
demonstrate the approach by computing the probability for elastic scattering of CaH and SrOH
molecules by Li atoms and SrF molecules by Rb atoms.

Molecular collisions are at the core of experiments
with ultracold molecules [1–4], which form the founda-
tion for multiple, rapidly evolving research fields, rang-
ing from cold controlled chemistry [5], to quantum com-
puting with trapped molecules [6], to quantum simula-
tion [2, 3], and precision tests of fundamental symme-
tries [1, 2, 5, 7]. Recent highlights include the produc-
tion of high phase-space-density ensembles of polar radi-
cals SrF(2Σ) and CaF(2Σ) via laser cooling and magnetic
trapping [8, 9], fundamental studies of ultracold molecu-
lar collisions and chemical reactions in the single partial-
wave regime [10, 11], external field control of reaction dy-
namics [12–14] and stereodynamics [15], the observation
of dipolar exchange interactions between ultracold KRb
molecules trapped in an optical lattice [16], and order-
of-magnitude better limits on the electric dipole moment
of the electron [17]. In addition, ultracold molecular col-
lisions provide new insights into quantum chaos and its
relation to quantum scattering [18–21].

As molecular phase-space densities continue to increase
toward quantum degeneracy, it is increasingly more im-
portant to understand molecular collisions at low temper-
atures. This is required for controlling molecular inter-
actions with external fields [4, 22], which is a necessary
ingredient in many applications of ultracold molecular
gases [1]. Collisions are essential for cooling experiments.
While momentum energy transfer in elastic collisions en-
ables sympathetic and/or evaporative cooling, inelastic
collisions lead to undesirable trap loss and heating. A
large ratio of elastic to inelastic collision rates (γ ≥ 100)
is among the key factors that determine the feasibility
of cooling experiments [1, 23]. Collisions also limit pre-

cision measurements. Finally, understanding molecular
collisions is critically important for the development of
the primary pressure standard for high- and ultra-high-
vacuum regimes [24–27]. Quantum scattering calcula-
tions of molecular collisions are essential to guide ex-
periments in the choice of molecular systems amenable
to collisional cooling, control and applications of cold
molecules. However, at present, quantum scattering
calculations cannot be used for quantitative predictions
of molecular collision observables at ultracold tempera-
tures, for two reasons.

First, low-temperature scattering observables are ex-
tremely sensitive to small uncertainties in the potential
energy surface (PES) underlying quantum scattering cal-
culations [28–31]. This well-known phenomenon is illus-
trated in Figure 1, showing the variation of scattering
cross sections with a scaling factor modifying the PES
for a relatively simple Li - CaH collision system. As can
be seen, a small variation (< 1%) of the PES may change
the scattering cross sections by as much as ten orders of
magnitude. This characteristic phenomenon is a result of
the presence of a large number of scattering resonances
which emerge at zero energy as the potential is scaled.
The uncertainty of the PES produced by current quan-
tum chemistry methods, especially for heavy open-shell
systems of relevance to the research field of ultracold
molecules [8, 9, 32, 33], is much larger than 1 %. As
a result, even for the lightest collision systems [10], it is
not presently possible to determine cold collision cross
sections with quantitative accuracy [13, 34–36].

The second major problem making quantum predic-
tions of ultracold scattering observables unfeasible is
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FIG. 1. Elastic cross section σel (black solid), inelastic cross
section σinel (red solid) and the ratio of elastic-to-inelastic
cross sections γ (blue dashed) as a function of the poten-
tial scaling parameter λ for Li-CaH at the collision energy of
EC = 10−5 cm−1 with the external magnetic field of 100 G
for Nmax = 55 (a) and Nmax = 5 (b).

that of basis set convergence. Molecular interactions
are strongly anisotropic, and couple a large number
of rotational, fine, and hyperfine states. As a result,
quantum scattering calculations of ultracold collision
properties must include a very large number of basis
functions [13, 34, 37] to achieve numerical convergence,
severely limiting the scope of ultracold collision problems
amenable to a rigorous theoretical study.

In this Letter, we propose a new statistical approach
to overcome both of the central problems in ultracold
molecular collision theory. We argue that the results
displayed in Fig. 1 contain meaningful statistical infor-
mation, which can be used to predict the probability of
scattering events. In particular, we show that an en-
semble of scattering results with different PES could be
characterized by the cumulative probability distributions
(CPDs), which appear to be universal to different basis
sets and can thus be obtained with high precision based
on scattering calculations with small basis sets. This
is critically important as this opens up the possibility
of making predictions of experimentally relevant observ-
ables for a wide variety of molecular systems, currently
considered out of reach of quantum dynamics theory.

As a first application, we calculate the CPDs for cold

Li-CaH, Li-SrOH and Rb-SrF collisions in a magnetic
field to estimate the probability of a large elastic to
inelastic cross section ratio P (γ > 100). The elastic
scattering probability is an essential figure of merit for
molecular sympathetic cooling [38–40]. We show that the
CPDs of the elastic-to-inelastic ratio γ provide a natural
way to estimate the probability, leading to an efficient
methodology for screening molecular candidates with fa-
vorable collisional properties for sympathetic cooling.

We begin by defining the CPD of a scattering observ-
able γ, which we assume to be a random variable drawn
from an ensemble {γi} (in the following γ will be identi-
fied with the elastic-to-inelastic ratio)

F (Γ) = P (γ ≤ Γ), (1)

where P (γ ≤ Γ) is the probability that γ does not exceed
Γ. In the limit of infinitely large ensemble size, the CPD

may be expressed as F (Γ) =
∫ Γ

0
p(γ)dγ, where p(γ) is

the probability density function of the observable γ. As-
suming that an atom-molecule collision pair is suitable
for sympathetic cooling if γ > 100 [1], we can define the
elastic scattering probability as Ps = 1 − F (Γ = 100),
which represents the fraction of the elements in the en-
semble for which γ > 100.

To obtain the statistics of scattering observables nec-
essary to evaluate the CPD, we sample the interaction
PES V using the potential scaling method, whereby the
atom-molecule PES is multiplied by a dimensionless scal-
ing factor λ, which is varied to introduce the PES uncer-
tainty [30, 39, 41–43]. We scan the value of λ from 0.95 to
1.05 with the grid step ∆λ = 2× 10−4, leading to a sam-
ple of 501 points {Vi} (i = 1, 2, ..., 501), drawn from the
ensemble with ± 5% uncertainty, which corresponds to a
typical accuracy of modern ab initio PESs [39]. For V , we
use the accurate ab initio interaction PESs for Li-CaH,
Li-SrOH, and Rb-SrF from our previous work [40, 44, 45].
We note that the precise estimate of the uncertainty is
not important for our statistical approach as shown in
the Supplemental Material [46–51]. By carrying out CC
calculations for every Vi in {Vi} as described below, we
obtain samples of scattering observables such as the elas-
tic {σel,i} and inelastic {σinel,i} cross sections and their
ratio {γi}. We note that more elaborate random sam-
pling methods produce essentially the same CPDs as the
standard λ-scaling method used here [46].

Having specified the potential ensembles, we proceed
to carry out numerically exact quantum scattering calcu-
lations on ultracold collisions of alkali-metal atoms (A)
with 2Σ+ radicals (B) in the presence of an external mag-
netic field. In atomic units, the Hamiltonian of the colli-
sion complex is [44, 45]

Ĥ = −
1

2µR

d2

dR2
R+

(Ĵ − N̂ − ŜA − ŜB)
2

2µR2
+ ĤA+ ĤB+ Ĥint, (2)

where R is the distance between the atom and the center-
of-mass of the molecule, µ and Ĵ are the reduced mass
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and the total angular momentum of the collision complex,
N̂ is the rotational angular momentum of the molecule,
and ŜA and ŜB are the atomic and molecular spins. The
atomic Hamiltonian ĤA = geµBŜA,ZB, where ge is the

electron g-factor, µB is the Bohr magneton, ŜA,Z is the

projection of ŜA onto the magnetic field axis and B is the
magnitude of the external magnetic field. The molecular
Hamiltonian ĤB = BeN̂

2+γSRN̂ ·ŜB+geµBŜB,ZB, where
Be and γSR are the rotational and spin-rotation con-
stants. In Eq. (2), Ĥint = λV̂ + V̂dd is the atom-molecule
interaction, where V̂ is the scaled atom-molecule PES
discussed above and V̂dd is the magnetic dipole-dipole
interaction [45]. The wave function of the collision com-

plex is expanded in a set of basis functions [40, 44, 52]
|JMΩ〉|NKN 〉|SAΣA〉|SBΣB〉 , where Ω, KN , ΣA and ΣB

are the projections of J , N , SA and SB onto the body-
fixed (BF) z axis defined by the atom-diatom Jacobi
vector R, leading to a system of CC equations, which
is solved numerically as described in our previous work
[40, 44–46, 52]. The size of the basis set is determined
by the cutoff parameters Jmax and Nmax which give the
maximum values of J and N . Using Jmax = 3 gives
converged results over the collision energy range stud-
ied here (EC = 10−6 − 10−2 cm−1). We consider ul-
tracold collisions of rotationally ground-state molecules
in their maximally stretched low-field-seeking Zeeman
states with spin-polarized alkali-metal atoms.
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FIG. 2. Nmax dependence of the cumulative probability distributions of elastic σel and inelastic σinel cross sections in Å2 (upper
panels) and the ratio of elastic-to-inelastic cross sections γ (lower panels) for Li-CaH (a), Li-SrOH (b) and Rb-SrF (c) at the
collision energy of 10−5 cm−1 with the external magnetic field of 100 G. Normalized histograms show the distributions of the
observables obtained with the largest Nmax values in each panels. At the limit of the infinity of the samples size, the histograms
would converge to the probability densities.

In Fig. 2, we show the CPDs of the scattering cross sec-
tions for Li-CaH, Li-SrOH and Rb-SrF obtained in CC
calculations with different basis sets. Remarkably, the
CPDs converge quickly with respect to basis set size, as
shown for Li-CaH in Fig. 2(a-1) and (a-2). This demon-
strates that we can obtain accurate CPDs using severely
restricted CC basis sets that would be too small to pro-
duce fully converged scattering cross sections. This opens
up the prospect of computing accurate CPDs for more
complex molecular systems, for which fully converged CC
calculations are prohibitively difficult.

From Fig. 2(a-2), the probability for the elastic-to-
inelastic ratio γ to fall below 100 is ∼0.2, giving the
elastic scattering probability of 80%. This probability, as
derived from the CPD, thus provides a useful parameter

for screening the suitability of atom-molecule systems for
sympathetic cooling based on their collisional properties.
The rapid convergence of CPDs with respect to Nmax is
an important advantage of the CPDs over the individual
γ values used previously for this purpose [1, 40, 53].

Figures 2(b-1) and (b-2) show the results for a heavier
collision system Li-SrOH, which requires much larger ro-
tational basis sets than Li-CaH (Nmax = 115) to obtain
converged results due to the small rotational constant of
SrOH [45, 46]. Despite this, we observe rapid convergence
of the CPDs with respect to Nmax, making it possible to
use basis sets with Nmax = 30 for quantitatively accurate
calculations.

The physical reason behind the rapid basis set conver-
gence of the CPDs is that the ensemble averaging pro-



4

0 1 2 3 4 5
log10(γ)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
ve

p
ro

b
ab

il
it
y

10−3cm−1

10−5cm−1

(a)

Nmax = 20

Nmax = 55

0 1 2 3 4 5 6 7
log10(γ)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
ve

p
ro

b
ab

il
it
y

1 G

100 G(b)

Nmax = 20

Nmax = 55

FIG. 3. Comparison of the cumulative probability distribu-
tions of the elastic-to-inelastic ratio for Li-CaH (a) between
EC = 10−5 cm−1 and EC = 10−3 cm−1 with the external
magnetic field of 100 G and (b) between B = 100 G vs B = 1
G at the collision energy of 10−5 cm−1.

cedure washes out the intricate details of the resonance
structure shown in Fig. 1, provided that the λ interval
contains enough resonances, which is ensured by the high
resonance density. We note that the CPDs do not contain
information about the correlation between the values of
λ and those of the scattering observables. For example,
if we consider a periodic function of λ, the CPD of the
periodic function is invariant with respect to the change
of the period of oscillations as long as the function oscil-
lates many times in the chosen interval of λ. Thus, while
we observe a significant difference in the resonance den-
sity as a function of λ between Fig. 1 (a) and (b), such
differences tend to have no effect on the CPDs.

Figure 2(c-1) shows the CPDs calculated for the heavi-
est collision system studied here (Rb-SrF), which also ex-
hibits the slowest basis set convergence, with Nmax = 125
required to produce accurate results [44]. The CPDs
of the inelastic cross sections (but not the elastic ones!)
tend toward higher values of σinel with increasing Nmax,
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FIG. 4. (a) Elastic scattering probability for Li-CaH as
a function of collision energy for the external magnetic field
of 1000 G (black stars) 100 G (blue circles), 10 G (green
squares) and 1 G (red triangles). Nmax = 20. (b) Same
for Li-SrOH (black circles) and Rb-SrF (red triangles) as a
function of magnetic field at the collision energy of 10−5 cm−1.
Nmax = 30 for Li-SrOH and Nmax = 50 for Rb-SrF.

saturating only at Nmax = 50, which is still significantly
lower than required for the fully converged CC calcu-
lation [44]. We attribute the slow convergence rate to
the broad shape resonances that occur in the inelastic
cross sections [44], affecting their background values over
a large range of magnetic fields. This also indicates that
the couplings with very highly excited rotational channels
N > 30 play an important role for the background value
of the inelastic cross section due to the strong anisotropy
of the Rb-SrF interaction.

To explore the variation of the CPDs with the collision
energy and magnetic field, we compare in Figure 3(a) the
CPDs of the elastic-to-inelastic ratio γ for Li-CaH in the
s-wave regime (EC = 10−5 cm−1) vs the multiple partial-
wave regime (EC = 10−3 cm−1). Figure 3(b) shows a
similar plot for two different values of the magnetic field.
We observe that the CPDs at different collision energies
and magnetic fields are statistically distinguishable from
each other, even within the limits imposed by numerical
convergence, making it possible to reliably predict the
variation of the elastic scattering probability with colli-
sion energy and field. The results shown in Fig. 3 also
suggest that the rapid convergence of CPDs with respect
to Nmax holds regardless of the collision energy and mag-
netic field. We can therefore systematically examine the
success probability of sympathetic cooling as a function
of these parameters using modest basis sets.

Figure 4 shows the elastic scattering probability for Li-
CaH as a function of collision energy. At EC ∼ 1 mK,
the probability is high regardless of the magnitude of the
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magnetic field, but decreases significantly with decreas-
ing collision energy due to the Wigner threshold depen-
dence of the elastic-to-inelastic ratio for s-wave scattering

(γ ∝ E
1/2
C ). At lower collision energies, the probabil-

ity decreases by a factor of ∼3 with increasing field due
to increased field sensitivity of the inelastic cross sections
caused by numerous scattering resonances, which tend to
enhance inelastic cross sections without affecting elastic
scattering [44]. A significant magnetic field dependence
of the elastic probability for Rb-SrF shown in the inset of
Figure 4 suggests that varying the field could be used to
optimize sympathetic cooling of 2Σ molecules with alkali-
metal atoms in a magnetic trap [44].

In summary, we have proposed a new statistical ap-
proach to account for the effect of PES uncertainties
on cold collision observables. The approach is based on
the CPDs computed by averaging the results of quan-
tum scattering calculations over an ensemble of inter-
action PES produced by the potential scaling method.
The remarkably fast basis set convergence of the CPDs
makes our approach applicable to a wide range of molec-
ular collision systems of current experimental interest,
such as ultracold chemical reactions [13] and polyatomic
molecules SrOH and CH3 with their low-frequency vibra-
tional modes, which are challenging to describe at the rig-
orous converged coupled-channel level [32, 54] (although
the quantum scattering methodology capable of treating
the vibrational modes is yet to be developed). It would be
interesting to further explore the properties of CPDs in
connection with the statistical model of insertion chem-
ical reactions [20, 55], and with the theory of quantum
chaotic scattering [18, 19, 21].

We are grateful to Balakrishnan Naduvalath for stim-
ulating discussions. This work was supported by NSF
grant No. PHY-1607610.
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