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We show that the new technique of terahertz 2D coherent spectroscopy is capable of giving
qualitatively new information about fractionalized spin systems. For the prototypical example of
the transverse field Ising chain, we demonstrate theoretically that, despite the broad continuum
of excitations in linear response, the 2D spectrum contains sharp features that are a coherent
signature of a “spinon echo”, which gives previously inaccessible information such as the lifetime
of the two-spinon excited state. The effects of disorder and finite lifetime, which are practically
indistinguishable in the linear optical or neutron response, manifest in dramatically different fashion
in the 2D spectra. Our results may be directly applicable to model quasi-1D transverse field Ising
chain systems such as CoNb2O6, but the concept can be applied to fractionalized spin systems in
general.

In the recent years wholly new classes of condensed
matter systems have become of intense interest. Topolog-
ical materials, quantum spin liquids, and strange metals
are characterized by Berry phase effects, fractional exci-
tations, and highly entangled ground states [1–4]. How-
ever, we can measure many of their correlations only im-
perfectly with existing tools. A promising direction is
nonlinear response that has been used to characterize the
symmetry of semiconductors [5] and magnets [6], Berry
phase in topological semimetals [7–9], and exotic ground
states and excitations in correlated systems [10–12].

For quantum spin liquids, one of their most remarkable
properties is the emergence of fractional particles, known
as spinons, that may be understood as carrying half a
conventional spin degree of freedom. Spinons present a
challenge for conventional spectroscopy as they must be
excited in pairs. This typically leads to a broad contin-
uum spectrum that represent a convolution of all possible
ways that energy and momentum can be shared between
two spinons. In conventional linear magnetic suscepti-
bility χ(1)(ω) of a spin chain [13] light excites a pair of
spinons with opposite momenta (Fig. 1a). Each pair gives
rise to a peak in the absorption spectrum Imχ(1) centered
at the frequency ω = λk+λ−k, where λk is the dispersion
relation of the spinon. As there are infinitely many such
pairs, the absorption peaks congest the frequency axis,
resulting in a broad continuum (Fig. 1b, top). While
the broad continuum seen with terahertz (THz) opti-
cal spectroscopy and neutron scattering has reasonably
been taken as evidence for spinons in spin chains [13–15],
the situation is less straightforward in higher dimensional
spin liquid candidates e.g. 2D Kitaev materials, herbert-
smithite, and triangular lattices [16–21]. In such cases,
the relative importance of finite lifetime and disorder and
even fractionalization itself is unclear. In all cases, the

FIG. 1. (a) The experimental setup for THz 2D coherent
spectroscopy. Two linearly polarized magnetic field pulses A
and B arrive at the sample (in this case, transverse field Ising
chain (TFIC)) at time 0 and τ . Magnetization is recorded
at time τ + t. In the FM phase, the pulses excite a pair
of spinons (domain walls) with momenta ±k. (b) Top: 1D

spectroscopy probes the linear magnetic susceptibility χ(1)(ω)
of TFIC. Each pair of spinons with momenta ±k gives an
absorption peak. The peaks congest the frequency axis, re-
sulting in a spinon continuum. Bottom: 2D spectroscopy
probes nonlinear magnetic susceptibilities of the TFIC. The
signal due to the third order susceptibility χ(3)(ωt, ωτ ) can re-
solve the spinon continuum by spreading it into the frequency
plane. Spectral congestion occurs along the diagonal, whereas
the width of the individual resonance peak is revealed along
the anti-diagonal direction.

intrinsic spectral properties of spinons such as the line
width and shape are hidden in the continuum.

In this work, we show that the new technique of THz
two-dimensional coherent spectroscopy (2DCS) [22, 23]
can provide qualitatively new information on the dy-
namical properties of spinons. We explore our ideas in
the context of the simplest minimal model for fraction-
alization – the transverse field Ising chain (TFIC) – but
the possibilities are more general. In the optical and ra-
dio frequency range [24–27] 2DCS is an established tech-
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FIG. 2. 1D and 2D spectra in the FM phase (h/(h+ J) = 0.3) of the TFIC. From the top to bottom, the rows show the case
with no dissipation (1/T1,2 = 0), with dissipation (1/T1,2 = 0.2(J + h) (other values of T1,2 bring no significant changes), and

with quenched disorder. From the left to right, the columns show respectively χ
(1)
xx (ω), and the Fourier transforms (FT) of

χ
(2)
xxx(t, τ + t), of χ

(3)
xxxx(t, τ + t, τ + t), of χ

(3)
xxxx(t, t, τ + t) and its profile along a cut indicated by the arrow. Only half of the

frequency plane is shown; the other half is related by complex conjugation. For the cases without disorder (top, middle rows),
the calculation is done on a chain of L = 100 with periodic boundary condition. For the disorder case (bottom row), we set
hn = han and Jn = Jbn, where an, bn are site dependent, dimensionless random numbers drawn uniformly from the interval
(0.5, 1.5). The spectra are calculated for a chain of L = 40 with open boundaries, and averaged over 200 disorder realizations.

nique that probes nonlinear susceptibilities. Thanks to
recent technical advances that enable table-top high in-
tensity THz sources, it has been extended recently to the
THz range to study graphene and quantum wells [22, 23],
molecular rotations [28], and spin waves in the conven-
tional magnet YFeO3 [29]. THz 2DCS uses two pulses
in a collinear geometry to excite a system at one fre-
quency and detect at another, thus producing a 2D spec-
trum. Applications of 2DCS include quantifying nonlin-
ear couplings between excitations and – relevant to the
present work – separating inhomogeneous and homoge-
neous broadening [25–27]. A similar mechanism will al-
low for the resolution of the spinon continuum in the
2D spectrum (Fig. 1b, bottom), where congestion oc-
curs along the 2D spectrum’s diagonal, but the intrinsic
line width of each spinon pair is revealed by the spectral
width along the anti-diagonal.

The TFIC Hamiltonian is [30]:

H = −J(

L−1∑
n=1

σznσ
z
n+1 + ησzLσ

z
1)− h

∑
n

σxn, (1)

Here σx,y,zn are Pauli matrices, J > 0 is the ferromagnetic
exchange, h > 0 is the transverse field, and L is the chain
length. We shall use periodic (η = 1) and open (η = 0)
boundary conditions as they suit our purposes. Macro-
scopic response functions are independent of such choices.
This system admits a two-fold degenerate ferromagnetic

(FM) ground state for h < J and a single paramagnetic
(PM) ground state for h > J . While strictly speaking the
TFIC is not a spin liquid, the domain wall excitations of
the FM phase are close analogues of spinons. Henceforth,
we use “domain wall” and “spinon” interchangeably.

We consider a setup similar to that used in Ref. [29].
Two linearly polarized magnetic field pulses A and B ar-
rive at the sample at time 0 and τ > 0 (Fig. 1a). The
magnetization at a time τ+t along direction α, Mα

AB(τ+
t), is a convolution of applied field with the sample re-
sponse [31]. The experiment is then repeated but with
pulse A or B alone and the magnetization recorded as
Mα

A(τ+t) and Mα
B (τ+t). The nonlinear signal is defined

as Mα
NL(t, τ) = Mα

AB(τ+t)−Mα
A(τ+t)−Mα

B (τ+t). The
2D spectrum is the Fourier transform (FT) of Mα

NL(t, τ)
over the domain t > 0, τ > 0.

The nonlinear magnetization Mα
NL(t, τ) is a direct mea-

sure of the second and/or third order magnetic suscep-
tibilities. For simplicity, we model the magnetic field
as two Dirac-δ pulses with the same polarization β, i.e.
Bβ(s) = Aβ0 δ(s) +Aβτ δ(s− τ), where s is time, and Aβ0,τ
the pulse areas. In principle, the polarizations of pulse A
and B can be different. The nonlinear signal (See Sup-
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plemental Material (SM) [32]) is,

Mα
NL(t, τ) = Aβ0A

β
τχ

(2)
αββ(t, τ + t)

+ (Aβ0 )2Aβτχ
(3)
αβββ(t, τ + t, τ + t)

+Aβ0 (Aβτ )2χ
(3)
αβββ(t, t, τ + t) +O(A4). (2)

Here, we have retained the dominant and sub-dominant
contributions. The two χ(3) terms encode different phys-
ical processes. In the first, pulse A couples to the sample
at second order whereas pulse B couples at first order. In
the second, the contributions of A and B are switched.

We are primarily interested in the spinons in the FM
phase at zero temperature, and thus use the representa-
tive model parameters h/(h + J) = 0.3 in the ensuing
discussion. Since σxn excites spinon pairs, we focus on

the polarization α = β = x̂. We calculate χ
(2)
xxx and

χ
(3)
xxxx analytically through the following procedure (see

SM [32] for details). We map Eq. (1) to free, fermionic
spinons by using the Jordan-Wigner transformation [30].
Each pair of spinons with momenta ±k form a two-level
system (TLS), whose ground (excited) state corresponds
to the absence (presence) of the said pair. The energy
level splitting is 2λk, where λk = 2

√
J2 + h2 + 2Jh cos k

is the spinon dispersion. As the TLSs formed by differ-
ent spinon pairs are decoupled, the TFIC is equivalent to
an ensemble of independent TLSs, thereby permitting a
straightforward calculation of the nonlinear response [27].

In more realistic models, additions to Eq. (1) such
as additional exchange interactions and spin-lattice cou-
plings induce spinon interactions, which give effects such
as spinon decay. By the TLS analogy, we incorporate
these effects phenomenologically through a population
time T1 and decoherence time T2 [5], which captures the
essential physics while maintaining the analytic tractabil-
ity [32]. We assume T1,2 are k-independent for simplicity.
The ideal TFIC then corresponds to T1,2 = 0.

We begin with the linear susceptibility per site,

χ(1)
xx (t) =

2θ(t)

L

∑
k>0

sin2 θke
−t/T2 sin(2λkt), (3)

where sin θk = −2J sin k/λk is the optical matrix ele-
ment. The summation is over the positive half of the first
Brillouin zone (1BZ). Using the above TLS picture, we
interpret Eq. (3) as follows. The magnetic field pulse in-
duces optical transitions in all TLS, producing a damped
oscillatory signal with frequency 2λk. The damping coef-
ficient 1/T2 reflects the spinon decay. Since the frequency
takes its value from a dense spectrum given by k, dephas-

ing leads to an additional decay of χ
(1)
xx (t), which is diffi-

cult to distinguish from the intrinsic decay due to finite
T2. This difficulty of unravelling the dephasing and the
intrinsic decay persists in the frequency domain. Here,

each spinon pair contributes an absorption peak in Imχ
(1)
xx

centered at the energy 2λk with width 1/T2. As k runs

over the 1BZ, the peaks form a broad continuum, which
disguises the intrinsic line width 1/T2. Comparing the
continuum for 1/T2 = 0 (Fig. 2a) and 1/T2 = 0.2(J + h)
(Fig. 2f), the difference is merely quantitative.

We then turn to the lowest order nonlinear response:

χ(2)
xxx(t, τ + t) =

4θ(t)θ(τ)

L

∑
k>0

sin2 θk cos θk

× [e−t/T1 cos(2λkτ)− e−(t+τ)/T2 cos(2λk(τ + t))]. (4)

The first term on the right hand side of Eq. (4) is non-
oscillatory in t. In the frequency domain, this gives rise
to a peak centered at ωt = 0, appearing as the streak
along the ωτ axis shown in Fig. 2b. Increasing 1/T1 from
0 leads to broadening of the streak (Fig. 2g). Viewing
ωτ as the pumping frequency and ωt the detecting fre-
quency, this streak is a THz rectification (TR) signal [29].
The second term of Eq. (4) is oscillatory in t + τ . Yet,
similar to Eq. (3), the dephasing leads to decay, which
is further modulated by the intrinsic decay due to T2.
This results in a diffusive, barely discernible signal in the
first frequency quadrant (Fig. 2b,g), which is similar to
the non-rephasing (NR) signal usually found in χ(3) [29].
See SM [32] for detailed discussion of these features.

Qualitatively different physics appears in χ
(3)
xxxx. It is

instructive to consider the more general form that corre-

sponds to a three-pulse process (Fig. 3a): χ
(3)
xxxx(t3, t2 +

t3, t1+t2+t3) = −(θ(t1)θ(t2)θ(t3)/L)
∑
k>0A

(1)
k +A

(2)
k +

A
(3)
k +A

(4)
k , where

A
(1)
k = 8 sin2 θk cos2 θk sin(2λk(t3 + t2 + t1))

× e−(t1+t2+t3)/T2 ; (5a)

A
(2)
k = −8 sin2 θk cos2 θk sin(2λk(t2 + t1))

× e−(t1+t2)/T2e−t3/T1 ; (5b)

A
(3)
k = 4 sin4 θk sin(2λk(t3 + t1))

× e−(t1+t3)/T2e−t2/T1 ; (5c)

A
(4)
k = 4 sin4 θk sin(2λk(t3 − t1))

× e−(t1+t3)/T2e−t2/T1 . (5d)

A
(1∼4)
k encode distinct evolution paths of the density

matrix of the spinon pair with momenta ±k due to the

THz pulses. While the forms of A
(1,2,3)
k resemble that

of χ
(2)
xxx, A

(4)
k is different in that t1 and t3 appear with

opposite signs. Regardless the oscillation frequency 2λk,
the phase accumulated between the first and the second
pulses (t1) is cancelled after the third pulse at t3 = t1.
Said differently, the dephasing process during t1 is coun-
tered by the rephasing process during t3. This rephasing
process is the incarnation of the photon echo in the con-

text of spinon dynamics. Tracing A
(4)
k back to its orig-

inating density matrix evolution sequence (Fig. 3a), we
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FIG. 3. (a) Three pulse process associated with χ
(3)
xxxx(t3, t2 +

t3, t1 + t2 + t3). The spinon echo process that produces the

rephasing signal A
(4)
k (Eq. (5)) is also shown. 0 (1) stands for

the ground (excited) state of the two-level system formed by
the spinon pair ±k. The density matrices during t1 and t3 are
Hermitian conjugate partners, and thus their time evolution
are effectively time reversals of each other. (b) The χ(3) terms
measured in the two-pulse set up (Eq. (2)) are special limits
of the three-pulse process.

find the sequence is identical to the photon echo process
from a TLS [27, 33]. Therefore, we term this process the
“spinon echo”.

Photon echo and its analogues are a sensitive diagnos-
tics of dissipation [27, 33]. Here, the rephasing signal
from the spinon echo allows for a direct measurement

of T2. To see this, we return to the χ
(3)
xxxx measured in

the two-pulse set up (Eq. (2)). χ
(3)
xxxx(t, t, τ + t) corre-

sponds to the limit t1 → τ, t2 → 0, t3 → t (Fig. 3b). We

may write
∑
k A

(4)
k = f(t − τ) exp(−(t + τ)/T2), where

f(t−τ) comes from the sum of sin4 θk sin(2λk(t−τ)) and
decreases as |t−τ | increases due to dephasing. Crucially,
the arguments of f and the T2 term are orthogonal linear
combinations of t and τ . The FT of f is a broad contin-
uum that depends on ωt−ωτ , whereas the the FT of the
T2 term is a narrow Lorentzian function of ωt + ωτ . The
product of the two thus gives rise to a streak of rephasing

signal in the imaginary part of the FT of χ
(3)
xxxx(t, t, τ+t).

The streak runs along the diagonal of the fourth quad-
rant, mirroring the energy range of spinon pairs. The
width of the streak along the anti-diagonal is a direct
measure of 1/T2: In the limit of T2 → 0, the anti-diagonal
width vanishes, reflecting the perfect phase cancellation
in the spinon echo (Fig. 2d,e); With finite T2, imperfect
phase cancellation leads to a finite anti-diagonal width
that scales with 1/T2 (Fig. 2f,g).

By contrast, χ
(3)
xxxx(t, τ + t, τ + t), corresponding to the

limit t1 → 0, t2 → τ, t3 → t, does not contain a spinon

echo (Fig. 3b). In the limit of 1/T1 → 0, A
(3,4)
k are func-

tions of t3 = t only. In the frequency domain, this leads
to a Dirac-δ peak on the ωτ = 0 line, which appears in
the imaginary part as a streak along the ωt axis (Fig. 2c).
Taking ωτ (ωt) as the pumping (detecting) frequency, this
may be interpreted as a pump-probe signal [29]. Increas-
ing 1/T1 broadens the signal (Fig. 2h).

Both χ
(3)
xxxx’s contain additional features that arise

from A
(1,2,3)
k terms in Eq. (5). Their FT contain a dif-

fusive, weak NR signal in the first quadrant. They also
contain a weak TR-like signal on the ωτ axis, which we
discuss further in SM [32].

To recap, the rephasing signal from the spinon echo
process can directly reveal the T2 time of spinon pairs.
Crucially, in the absence of dissipation (1/T1,2 = 0), the
anti-diagonal width of the rephasing signal is zero. We
now show that this feature is robust against quenched
disorder. To this end, we set the transverse field hn
and exchange constant Jn to be site dependent, namely
hn = han, Jn = Jbn, where an, bn are dimensionless ran-
dom numbers drawn from a uniform distribution in the
interval [0.5, 1.5]. The linear response (Fig. 2k) shows
only small changes comparing to the clean case. Since
this model remains integrable, the spinons are still exact
eigenstates, and therefore the anti-diagonal width of the
rephasing signal remains resolution limited (Fig. 2n,o).
Its strong sensitivity to dissipation, protected by the ro-
bustness against disorder, shows the utility of 2DCS.

In the FM phase, the σyn operators can also excite
spinon pairs. We therefore expect the 2DCS spectrum
with ŷ polarization to be similar to x̂. However, since
the σyn is a non-local operator in the spinon basis, the an-
alytic treatment made for x̂ does not translate directly
to ŷ. Nevertheless, as shown in the SM [32], numeri-
cal calculation finds that the 2D spectra along ŷ in the
FM phase (Fig. S4) are qualitatively similar to that of
x̂. Note that in the PM phase the streak-like rephasing
signal that is characteristic of fractional excitations is ab-

sent. χ
(3)
yyyy instead shows sharp isolated peaks [32] that

are typical of nonlinear spin waves [12, 29].
Using the TFIC as a prototypical example, we have

demonstrated that THz 2DCS can resolve the spinon
continuum and directly reveal the intrinsic line width of
spinon pairs. We expect spinon echo to be a generic
2D spectral feature of models that host spinons. Pro-
vided that the spinons are coherent quasiparticles, the
TLS picture naturally extends to higher dimensional spin
liquids. In general, spinon echo will produce a rephasing
streak qualitatively similar to that of the TFIC with fi-
nite T1,2. In particular, the finite anti-diagonal width of
the streak reflects the imperfect phase cancellation due
to finite quasiparticle lifetime.

Our results may be applicable to CoNb2O6, which is
the best known material example of a quasi-1D FM Ising
chain [13, 15, 34]. CoNb2O6 orders at temperatures be-
low ∼ 3 K, but at slightly higher temperatures, the linear
response is characterized by a broad lineshape charac-
terized by superimposed 2- and 4-spinon continua, that
hide information about spinon lineshapes. We expect
that THz 2DCS can reveal the intrinsic spectral proper-
ties of spinons in this system. Experiments can be done
in essentially the same fashion as previous THz 2DCS
measurements on the conventional magnet YFeO3 [29].
Such experiments are underway. Analyzing theoretically
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the 2D spectra of more realistic material models will also
prove fruitful. The spinon interactions present in these
models will produce additional spectral features that are
beyond the minimal model considered here.

With the information gained by establishing the tech-
nique on TFIC and its material realizations, we expect
even richer information can be gained by applying THz
2DCS to higher dimensional materials that are suspected
to harbor a spin liquid, but have only been character-
ized spectroscopically as having broad lineshapes such as
2D Kitaev magnets [17], herbertsmithite [16], and trian-
gular lattices [18–21]. By direct analogy to the present
results, we expect that one can measure the intrinsic life-
time of the multispinon excitations. Sharp anti-diagonal
features may give direct evidence for fractionalized ex-
citations and may be readily distinguished from highly
damped conventional spin waves that could alternatively
be present. Finally, we want to stress that our work is
just an early step in understanding the utility of THz
2DCS for quantum materials. We believe important ap-
plications will be found in many systems including su-
perconductors and topological materials.
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