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We report a new classical spin liquid in which the collective flux degrees of freedom break the
translation symmetry of the honeycomb lattice. This exotic phase exists in the frustrated spin-orbit
magnets where a dominant off-diagonal exchange, the so-called Γ term, results in a macroscopic
ground-state degeneracy at the classical level. We demonstrate that the system undergoes a phase
transition driven by thermal order-by-disorder at a critical temperature Tc ≈ 0.04|Γ|. This transition
reduces the emergent spherical spin-symmetry to a cubic one: spins point predominantly toward the
cubic axes, yet seem to remain disordered at T < Tc. Importantly, we show that the phase transition
corresponds to a hidden plaquette ordering of hexagonal fluxes which explicitly breaks the cubic
symmetry, a scenario that is confirmed by our extensive Monte Carlo simulations. We further
compute the dynamical structure factors of the spin-liquid phase and reveal unusual dynamical
properties of the hexagonal flux parameters.

Mott insulators with strong spin-orbit coupling have
generated considerable interest recently [1]. The local
magnetic degrees of freedom in such materials are enti-
ties with significant orbital character. This special prop-
erty leads to effective interactions that exhibit strong
anisotropy in both real and pseudo-spin spaces, as de-
scribed by Hamiltonians such as quantum compass or
120◦ models [2, 3]. A new type of magnetic frustra-
tion [4–6], which is different from the well studied geo-
metrical frustration [7–10], originates from the nontrivial
interplay between lattice geometry and anisotropic spin-
orbital exchange. One recent representative example is
the spin-1/2 honeycomb Kitaev model [11] with Ising-
like interactions involving different spin components on
the three distinct nearest-neighbor bonds. Remarkably,
the Kitaev model is exactly solvable and exhibits a quan-
tum spin-liquid ground state with fractionalized excita-
tions [11–13]. The classical limit of the Kitaev Hamilto-
nian also exhibits a macroscopic ground-state degeneracy
and interesting order-by-disorder phenomena [14–17].

The recent enormous interest in frustrated spin-orbit
magnets is triggered by the realization that spin inter-
actions in certain 4d and 5d Mott insulators are domi-
nated by the anisotropic Kitaev-type exchange [18–21].
The presence of other spin interactions, notably the
isotropic Heisenberg exchange, in these compounds even-
tually drives the system into a magnetically ordered state
despite a dominate Kitaev term [22–33]. Nevertheless,
the search for spin liquids in frustrated spin-orbit mag-
nets continues. Experimentally, tuning spin interactions
by applying magnetic field [34–36] or pressure [37, 38]
has been attempted to suppress the magnetic order. On
the theoretical side, it has been pointed out that the off-
diagonal exchange anisotropy, the so-called Γ term, plays
a crucial role in the magnetic behaviors of these spin-
orbit Mott insulators [39–45]. In fact, the suppression of
long-range order in some compounds is suspected to be
due to the increased strength of Γ interaction, instead

of the enhanced Kitaev-type exchange [46–49]. This ex-
perimental tendency can be understood from a recent
theoretical work that shows a new classical spin liquid in
the idealized Γ model on the honeycomb lattice and its
three-dimensional variants [50].

In this paper, we investigate the thermodynamic be-
havior of the Γ model at low temperatures and demon-
strate a phase transition driven by order-by-disorder at
Tc ≈ 0.04 |Γ|. Importantly, we show a hidden plaque-
tte order that breaks the lattice transition symmetry be-
low Tc. To begin with, we consider the Γ model on the
honeycomb lattice, in which nearest-neighbor (NN) spin
interaction is dominated by the off-diagonal exchange
term. It involves different spin-components on the three
inequivalent NN bonds, denoted as x, y, and z (see
Fig. 1), on the honeycomb lattice:

H = Γ
∑
γ

∑
〈ij〉‖γ

(Sαi S
β
j + Sβi S

α
j ). (1)

Here (α, β, γ) are permutations of (x, y, z). The classical
ground states of Γ model are extensively degenerate [50],
giving rise to a new type of classical spin liquid that is
different from the familiar cases in geometrical frustrated
magnets. Our Monte Carlo (MC) simulations show no
sign of phase transition down to T ∼ 0.05|Γ| [51]. The
energy density gradually approaches its minimum E0 =
−|Γ|, while the specific heat shows a plateau-like feature
at T . 0.1 |Γ|. The static structure factor for Γ > 0
exhibits a broad minima at q = 0 at T = 0.05|Γ| [51].
MC simulations further find extremely short-ranged spin-
spin correlation, which is similar to that seen in Kitaev
spin liquid [11, 14], but different from that of geometrical
frustrated systems [52–54].

The characterization of the degenerate ground-state
manifold has been discussed in great detail in Ref. [50].
A generic ground state is specified by a directional vec-
tor n̂ = (a, b, c) and a set of Ising variables {ηα} defined
on individual hexagons; see Fig. 1. In the classical limit,
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FIG. 1. (Color online) Ground states of the Γ model on a
honeycomb lattice. A generic ground state is characterized
by a directional vector n̂ = (a, b, c) and a set of Ising variables
{ηα} defined on individual hexagons. To construct a ground
state, first we build a perfect

√
3 ×
√

3 order based on the
six inequivalent spins of the tripled unit cell: SA = (a, b, c),
SB = (c, a, b), SC = (b, c, a), SD = ζ(b, a, c), SE = ζ(a, c, b),
and SF = ζ(c, b, a). Here ζ = −sgn(Γ). Next, go through
every hexagon and modify the component of its six spins:
Sx1 → ηSx1 , Sy2 → ηSy2 , Sz3 → ηSz3 , Sx4 → ηSx4 , Sy5 → ηSy5 , and
Sz6 → ηSz6 . In the example shown above, ζ = −1. The spins
of shaded hexagon at the lower left corner are: S1 = (a, b, c),
S2 = ζ(b, a, c), S3 = (b, c, a), S4 = ζ(a, c, b), S5 = (c, a, b),
and S6 = ζ(c, b, a).

these Ising variables are pure gauge degrees of freedom
and will remain disordered at all temperatures. An ex-
plicit procedure for constructing the ground state charac-
terized by n̂ and {ηα} starting from the perfect

√
3×
√

3
spin order is detailed in Fig. 1. Note that the eight di-
rections (±a,±b,±c) correspond to the same n̂ as they
are related by flipping the η variable. It is thus similar
to the director in nematic liquid crystal.

One important question regarding the dynamics of the
ground state is whether the different Ising sectors {ηα}
are fully connected. It turns out continuous transforma-
tion of {ηα} can be achieved with the aid of the direc-
tional vector n̂ = (a, b, c). To see this, we first note that
each ηα is associated with only one component of the unit
vector n̂ in the ground state. Take the hexagon shown
in Fig. 1 as an example. According to the ground-state
rule, the local η only controls the ‘a’-component of the six
spins in this hexagon. As a result, all η-variables can be
divided into three groups: type-A (respectively, B and C)
for spin-components controlled by a (respectively, b and
c). When one of the component of n̂ vanishes, 1/3 of the
η becomes idle. This feature allows us to construct a con-
tinuous path from one set of η to another one η′ by rotat-
ing n̂ according to the sequence: (a, b, c) → (0, b′, c′) →
(a′′, 0, c′′) → (a′′′, b′′′, 0) → (a, b, c). After the first rota-
tion, the vanishing a component allows us to change 1/3
of the η variables (those associated with a-component)
to their counterpart in η′. Repeating similar process for
the other two sets of η then completes the transforma-
tion from η to η′ while keeping the n̂ vector in the same

(a) (b)

FIG. 2. (Color online) Snapshots of spin configurations above
and below Tc = 0.0401|Γ|: (a) T = 0.05 and (b) T = 0.03.
In the low-T phase, spins predominately point toward the six
cubic directions.

direction.
The above discussion also shows that without the ro-

tational symmetry of n̂, different {ηα} becomes disjoint
from each other. Interestingly, our MC simulations find a
freezing phenomenon of the vector n̂ at a very low tem-
perature Tc ≈ 0.04 |Γ|, as demonstrated in Fig. 2. At
T > Tc, the spins and n̂ exhibit an emergent spherical
symmetry even at temperatures well below the exchange
energy scale |Γ|. This rotational symmetry is lost below
Tc, and spins mainly point toward the six cubic axes, or
equivalently the directional vector freezes to one of the
cubic directions, i.e. n̂ ∼ (1, 0, 0), (0, 1, 0), or (0, 0, 1).
As states parameterized by different n̂ are degenerate at
the mean-field level, the cubic directions are selected by
thermal fluctuations through the order-by-disorder mech-
anism. Indeed, simple analysis shows that these cubic
directions allow for the largest number of zero modes at
the harmonic level [55].

Importantly, although the spin-symmetry is seemingly
reduced from spherical to cubic when crossing Tc, this
cannot be viewed as a true reduction of symmetries as the
Γ model itself is already cubic-symmetric. The apparent
spherical symmetry at Tc < T < |Γ| is an emergent prop-
erty of the phase, which is due to spatial fluctuations of
directional vector n̂(r). Another important observation
is that while the degeneracy associated with n̂ is lifted
by thermal fluctuation, a discrete macroscopic degener-
acy persists due to the Ising gauge symmetry of {ηα},
especially for classical spins. Consequently, spins remain
disordered at T < Tc.

To resolve this issue and investigate the nature of the
low-T phase, we first note that the cubic spin-orbital
symmetry of the Γ model is indeed broken below Tc, yet
in a complicated pattern: local spins have to pick one of
the six cubic directions in a coordinated way while pre-
serving the gauge symmetry of {ηα}. A convenient local
quantity to characterize the broken symmetry is the flux
variable defined on each hexagon [11]:

Wα = Sx1 S
y
2 S

z
3 S

x
4 S

y
5 S

z
6 , (2)

where S1,··· ,6 are the six spins around the α hexagon.
These fluxes play an important role in the spin-1/2 Ki-
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FIG. 3. (Color online) Plaquette order of hexagonal fluxes
on honeycomb lattice. Shaded hexagons have nonzero flux
W ∼ 1, while empty hexagons have a vanishing W . Spins are
orthogonal to each other (with left handedness for ζ = −1)
on each shaded hexagon; their specific directions depend on
the local η, as specified in the insets. The arrangement of
hexagons with finite W corresponds to the famous
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3 ×
√

3
long-range order. Spins remain disordered due to uncorre-
lated ηα on the shaded hexagons.

taev model as they are “integrals of motion” of the
Hamiltonian [11]. In our case, the flux Wα is similarly a
gauge-invariant variable, that is independent of ηα. On
the other hand, it can be used to characterize the order-
ing of n̂. To see this, we note that in the ground state,
they only take on three different values [50]: WA = ζa6

for hexagons whose η is associated with component a,
and similarly WB = ζb6 and WC = ζc6 for the other two
sets of hexagons, where ζ = −sgn(Γ). As n̂ freezes to
one of the cubic directions, 2/3 of the fluxes also vanish.
Since hexagons of a given type form an enlarged trian-
gular lattice, the flux patten of the low-T phase, e.g.
WA ≈ 1, and WB ≈ WC ≈ 0, corresponds to a broken
translation symmetry; see Fig. 3. Importantly, the un-
correlated ηα on hexagons with nonzero W give rise to
a disordered spin configuration. We note in passing that
plaquette orders with similar spatial pattern also exist
as ground state in J1-J2 quantum S = 1/2 and S = 1
honeycomb Heisenberg model [56–59]. Our finding shows
a rare example of plaqutte ordering hidden in a classical
spin liquid on honeycomb lattice.

The arrangement of hexagons with nonzero W shown
in Fig. 3 suggests an order parameter

W̃ (Q) =
1

N

∑
α

Wα e
iQ·rα , (3)

which is the Fourier transform at wavevector Q =
(4π/3, 0), corresponding to the

√
3×
√

3-order, for charac-
terizing the broken translation symmetry. We performed
extensive MC simulations at temperatures around Tc to
examine the critical behaviors; the results are summa-
rized in Fig. 4. The specific heat shows clear finite-
size effect. Moreover, the order parameter defined as
Φ ≡ 〈|W̃ (Q)|〉 exhibits characteristics of a second-order
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FIG. 4. (Color online) Monte Carlo simulation of the transla-
tion symmetry breaking of flux variables. (a) specific heat C,

(b) order parameter Φ = 〈|W̃ (Q)|〉. The crossing point of the
Binder curves (inset) gives an estimate of Tc ≈ 0.0402 [60].
Critical exponents of the transition are obtained from finite-
size scaling: α = 0.167, β = 0.177, γ = 1.47, and ν = 0.863.

phase transition. For example, the growth of Φ below
Tc becomes sharper with increasing L. We estimate a
critical temperature Tc ≈ 0.0402|Γ| from the crossing
of B4 curves [60]. Our finite-size scaling analysis pro-
duces fairly reasonable data-points collapsing [60], fur-
ther supporting a second-order phase transition at Tc.
Since the plaqute-ordering is intimately related to a bro-
ken Z3 symmetry, some of the critical exponents, e.g. ν
and γ, obtained from finite-size scaling, shown in cap-
tion of Fig. 4, are consistent with the 2D 3-state Potts
universality class [61], although others show noticeable
deviations. This discrepancy could be due to the gauge
degrees of freedom {ηα}, which might have nontrivial ef-
fects on the critical behavior.

We next investigate the dynamical behaviors of the
spin liquids above and below the critical Tc. To this
end, we employ the semiclassical Landau-Lifshitz (LL)
dynamics simulation, which has been successfully applied
to compute the dynamical structure factor of various clas-
sical spin liquids [9, 62, 63]. For T > Tc, MC simu-
lations are used to prepare initial states sampled from
the Boltzmann distribution. We then perform energy-
conserving LL simulation to obtain trajectories of spins
Si(t) [64, 65]. The dynamical structure factor Sαβ(q, ω)
is computed from the Fourier transform of the real-space
correlator 〈Sαi (t)Sβj (0)〉, where α, β = x, y, z, averaged
over the initial states. As discussed above, since ground
states parameterized by different {ηα} are disconnected
below Tc, an additional average over random {ηα} is in-
troduced manually to improve the efficiency [66, 67].

The diagonal part of the dynamical structure factor
S(q, ω) ≡∑

α Sαα(q, ω) are shown in Fig. 5 for the two
spin liquid phases. The S(q, ω) at T > Tc shows broad
continuum over a wide energy range in both cases. On
the other hand, structures of coherent quasi-particle dis-
persion can be seen at high energies for S(q, ω) in the
low-T phase. These coherent excitations in a liquid phase
are reminiscent of the electron pseudo-bands observed in
liquid metals [68, 69]. Their origin can be traced to the
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FIG. 5. (Color online) The diagonal part of the dynamical
structure factor S(q, ω) = Sxx(q, ω) + Syy(q, ω) + Szz(q, ω)
computed from LL simulations for antiferromagnetic (top)
and ferromagnetic (bottom) Γ model. The results below Tc
are shown in panels (a) and (c), while those above Tc are
shown in (b) and (d).

robust local or short-range ordering in a liquid state.

Interestingly, the off-diagonal Sxy(q, ω), shown in
Fig. 6(a), exhibits intriguing excitations associated with
the high-symmetry points of the BZ. It is important to
note that a large signal also exists at the same high-
symmetry points in the static structure factor. These
quasi-q-independent features thus seem to derive from
coherent oscillations of the underlying plaquette pattern.
To further investigate the source of these excitations,
we compute the dynamical structure factor of fluxes
W(q, ω), which is defined as the space-time Fourier trans-
form of the correlation function 〈Wα(t)Wβ(0)〉. Interest-
ingly, as shown in Fig. 6(b), similar momentum-specific
excitations are observed in the dynamical structure factor
W(q, ω). In addition to the long-range order at the K-
point, the finite excitations associated with the Γ and Y
points result from the non-zero average 〈W 〉 ≈ 1/3 of the√

3×
√

3 flux patterns, e.g. WA ≈ 1, and WB ≈WC ≈ 0.

Fig. 6(c) and its inset show the ω dependence of the
dynamical excitationsW(Q, ω) with momentum fixed at
Q = (4π/3, 0), corresponding to the K point. Signifi-
cant differences in the overall behavior can be seen at
temperatures above and below the critical Tc, in partic-
ular see the inset semi-log plot. Importantly, we find
distinct power-law behaviorsW(Q, ω) ∼ 1/ωa in the two
spin-liquid phases, with the exponent a ≈ 1.5 at high
temperatures, and a ≈ 1.22 in the flux-ordered phase.
These exponents might be related to the critical behav-
ior of the disorder-induced localization of the low-energy
spin-excitations [70, 71]. These finite energy excitations
at the ordering wavevector Q reflect the composite na-
ture of the flux variables that develop a long range order
below Tc. Notably, they are in stark contrast to the dis-
persive Goldstone modes of simple long-range magneti-
cally ordered states.
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FIG. 6. (Color online) (a) Off-diagonal dynamical structure
factor Sxy(q, ω) in logarithmic scale, and (b) dynamical struc-
ture factor of flux variables W(q, ω) in logarithmic scale at
T = 0.01. Also note the log-scale for the ω axis. (c) The ω
dependence of the flux dynamical structure factorW(Q, ω) at
the
√

3×
√

3 ordering wavevector Q for both high and low-T
spin liquid phases.

Discussion and Outlook. We have demonstrated that
thermal order-by-disorder in honeycomb Γ-model drives
a phase transition into a new spin liquid phase with
a hidden flux long-range order. In the presence of
other perturbations, the degeneracy of the plaquette-
ordered states is lifted. Specifically, the antiferro-Kitaev
exchange preserves the continuous degeneracy of n̂ =
(a, b, c), while lifting the discrete η degeneracy by select-
ing the uniform configuration. Interestingly. the discrete
degeneracy remains in the case of ferromagnetic Kitaev
exchange. On the other hand, Heisenberg interactions
favors a ground state with n̂ = (1, 1, 1). However, the
flux-ordered spin liquid is expected to survive in a finite
temperature window when these perturbations are small
compared with the dominant Γ term. In the presence
of a magnetic field along the [111] direction, the flux-
ordered liquid phase also survives up to Hc ∼ 0.3|Γ|,
above which a distinct intermediate phase sets in as the
ground state. Experimentally, through coupling to other
degrees of freedom in crystal, e.g. spin-lattice coupling,
the translation-symmetry breaking could produce Bragg
peaks in neutron or X-ray scattering.

The effects of quantum fluctuations have been exten-
sively discussed in Ref. [50]. The relevant energy scale
of quantum order-by-disorder is T ∗ ∼ O(|Γ|S) for both
the discrete η and continuous n̂ variables [50]. As noted
in the same study, the induced effective interaction be-
tween ηα remains frustrated for antiferromagnetic Γ, so a
similar flux-ordered spin liquid can be stabilized by pure
quantum fluctuations in this case. It is, however, unclear
what is the scenario in the ferromagnetic Γ model due
to the closeness of the two energy scales. Restoring the
spin length, the critical temperature for thermal order-
by-disorder is Tc ∼ 0.04|Γ|S2. Our finding thus ensures
the existence of the exotic flux-ordered spin liquid for
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large S at the temperature window T ∗ . T . Tc. Finally,
it is also of great interest to study similar flux-ordering
in three-dimensional hyper- or stripy-honeycomb lattices
where some of the flux variables are defined on extended
strings.
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[39] Y. Sizyuk, C. Price, P. Wölfle, and N. B. Perkins, Impor-
tance of anisotropic exchange interactions in honeycomb
iridates: Minimal model for zigzag antiferromagnetic or-
der in Na2IrO3, Phys. Rev. B 90, 155126 (2014).

[40] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Generic Spin
Model for the Honeycomb Iridates beyond the Kitaev
Limit, Phys. Rev. Lett. 112, 077204 (2014).

[41] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valenti, Chal-
lenges in design of Kitaev materials: Magnetic interac-
tions from competing energy scales, Phys. Rev. B 93,
214431 (2016).

[42] H.-S. Kim and H.-Y. Kee, Crystal structure and mag-
netism in α-RuCl3: An ab initio study, Phys. Rev. B 93,
155143 (2016).

[43] J. Chaloupka and G. Khaliullin, Magnetic anisotropy in
the Kitaev model systems Na2IrO3 and RuCl3, Phys.
Rev. B 94, 064435 (2016).

[44] S. Nishimoto, V. M. Katukuri, V. Yushankhai, H. Stoll,
U. K. Roessler, L. Hozoi, I. Rousochatzakis, and J.
van den Brink, Strongly frustrated triangular spin lat-
tice emerging from triplet dimer formation in honeycomb
Li2IrO3, Nat. Commun. 7, 10273 (2016).

[45] L. Janssen, E. C. Andrade, and M. Vojta, Magnetiza-
tion processes of zigzag states on the honeycomb lattice:
Identifying spin models for α-RuCl3 and Na2IrO3, Phys.
Rev. B 96, 064430 (2017).

[46] S. M. Winter, K. Riedl, R. A. Maksimov, A. L. Cherny-
shev, A. Honecker, and R. Valenti, Breakdown of
magnons in a strongly spin-orbital coupled magnet, Nat.
Commun. 8, 1152 (2017).

[47] Z.-X. Liu and B. Normand, Dirac and chiral quantum
spin liquids on the honeycomb lattice in a magnetic field,
Phys. Rev. Lett. 120, 187201 (2018).

[48] H.-S. Kim, Y. B. Kim, and H.-Y. Kee, Revealing frus-
trated local moment model for pressurized hyperhoney-
comb iridate: Paving the way toward a quantum spin
liquid, Phys. Rev. B 94, 245127 (2016).

[49] M. Majumder, R. S. Manna, G. Simutis, J. C. Orain, T.
Dey, F. Freund, A. Jesche, R. Khasanov, P. K. Biswas, E.
Bykova, N. Dubrovinskaia, L. S. Dubrovinsky, R. Yadav,
L. Hozoi, S. Nishimoto, A. A. Tsirlin, and P. Gegenwart,
Breakdown of magnetic order in the pressurized Kitaev
iridate, Phys. Rev. Lett. 120, 237202 (2018).

[50] I. Rousochatzakis and N. B. Perkins, Classical spin liquid
instability driven by off-diagonal exchange in strong spin-
orbital magnets, Phys. Rev. Lett. 118, 147204 (2017).

[51] See supplemental materials for details of Monte Carlo
simulations and the calculation of static structure factors.

[52] D. A. Garanin and B. Canals, Classical spin liquid: Ex-
act solution for the infinite-component antiferromagnetic
model on the kagome lattice, Phys. Rev. B 59, 443
(1999).

[53] S. V. Isakov, K. Gregor, R. Moessner, and S. L. Sondhi,
Dipolar Spin Correlations in Classical Pyrochlore Mag-
nets, Phys. Rev. Lett. 93, 167204 (2004).

[54] C. L. Henley, Power-law spin correlations in pyrochlore
antiferromagnets, Phys. Rev. B 71, 014424 (2005).

[55] See supplemental materials for details on the calculation
of zero modes. Related techniques can be found in Ref. [9]
(first reference in the supplementary material).

[56] R. Ganesh, J. van den Brink, and S. Nishimoto, Decon-
fined Criticality in the Frustrated Heisenberg Honeycomb
Antiferromagnet, Phys. Rev. Lett. 110, 127203 (2013).

[57] Z. Zhu, D. A. Huse, and S. R. White, Weak Plaquette
Valence Bond Order in the S = 1/2 Honeycomb J1-J2
Heisenberg Model, Phys. Rev. Lett. 110, 127205 (2013).

[58] H. H. Zhao, Cenke Xu, Q. N. Chen, Z. C. Wei, M. P.
Qin, G. M. Zhang, and T. Xiang, Plaquette order and
deconfined quantum critical point in the spin-1 bilinear-
biquadratic Heisenberg model on the honeycomb lattice,
Phys. Rev. B 85, 134416 (2012).

[59] S.-S. Gong, W. Zhu, and D. N. Sheng, Quantum phase
diagram of the spin-1 J1-J2 Heisenberg model on the hon-
eycomb lattice, Phys. Rev. B 92, 195110 (2015).

[60] See supplemental materials for details of Monte Carlo
simulations and finite-size scaling analysis of the thermal
order-by-disorder transition.

[61] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235
(1982).

[62] M. Taillefumier, J. Robert, C. L. Henley, R. Moessner,
and B. Canals, Semiclassical spin dynamics of the anti-



7

ferromagnetic Heisenberg model on the kagome lattice,
Phys. Rev. B 90, 064419 (2014).

[63] A. M. Samarakoon, A. Banerjee, S.-S. Zhang, Y. Kamiya,
S. E. Nagler, D. A. Tennant, S.-H. Lee, and C. D. Batista,
Comprehensive study of the dynamics of a classical Ki-
taev spin liquid, Phys. Rev. B 96, 134408 (2017).

[64] J. H. Mentink, M. V. Tretyakov, A. Fasolino, M. I. Kat-
snelson, and Th. Rasing, Stable and fast semi-implicit
integration of the stochastic Landau-Lifshitz equation,
J. Phys.: Cond. Matter 22, 176001 (2010).

[65] Details of the Landau-Lifshitz dynamics simulation can
be found in the Supplementary materials.

[66] Since the effective interaction between the Ising variables
{ηα} is frustrated, special Monte Carlo sampling of the
antiferromagnetic Ising model on the triangle lattice [67]
was performed for the initial state; see supplemental ma-
terial for details.

[67] G. H. Wannier, Antiferromagnetism. The Triangular
Ising Net, Phys. Rev. 79, 357 (1950).

[68] F. Baumberger, W. Auwärter, T. Greber, J. Osterwalder,
Electron Coherence in a Melting Lead Monolayer, Science
306, 2221 (2004).

[69] K. S. Kim and H. W. Yeom, Radial Band Structure of
Electrons in Liquid Metals, Phys. Rev. Lett. 107, 136402
(2011).

[70] Power-law ω-dependence of S(q, ω) in the vicinity of
Bragg peaks has been investigated in, e.g. Ref. [71]. De-
tailed study of these low-energy spin-excitations will be
left in the future.

[71] R. Bruinsma and S. N. Coppersmith, Anderson localiza-
tion and breakdown of hydrodynamics in random ferro-
magnets, Phys. Rev. B 33, 6541 (1986).

[72] A. M. Samarakoon, G. Wachtel, Y. Yamaji, D. A. Ten-
nant, C. D. Batista, Y. B. Kim, Classical and quantum
spin dynamics of the honeycomb Γ model, Phys. Rev. B
98, 045121 (2018).


	Hidden plaquette order in classical spin liquid stabilized  by strong off-diagonal exchange
	Abstract
	References


