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We study the electron-phonon coupling in twisted bilayer graphene (TBG), which was recently
experimentally observed to exhibit superconductivity around the magic twist angle θ ≈ 1.05◦.
We show that phonon-mediated electron electron attraction at the magic angle is strong enough to
induce a conventional intervalley pairing between graphene valleys K and K′ with a superconducting
critical temperature Tc ∼ 1K, in agreement with the experiment. We predict that superconductivity
can also be observed in TBG at many other angles θ and higher electron densities in higher Moiré
bands, which may also explain the possible granular superconductivity of highly oriented pyrolytic
graphite. We support our conclusions by ab initio calculations.

Twisted bilayer graphene (TBG) is a highly tunable
system, which is engineered by stacking two graphene
layers at a relative twist angle θ, a procedure which pro-
duces a Moiré pattern superlattice. Recently [1, 2], it was
observed that TBG at low filling exhibits unconventional
insulator and superconductor phases near the magic an-
gle θ = 1.05◦, where the lowest electron bands become
extremely flat [3, 4]. The Fermi energy of the system is
below 10meV, while by comparison the superconductor
critical temperature Tc ∼ 1K is relatively high. Since
then, some theoretical studies have been devoted to un-
derstanding the insulator and superconductor phases of
the TBG [5–34]. A closely related system, the highly
oriented pyrolytic graphite (HOPG) which contains nu-
merous twisted interfaces, was also reported showing evi-
dences of granular superconductivity [35–37], and is sug-
gested to share a similar superconductivity mechanism
as that in TBG [9, 38].

Here we show that the TBG Moiré pattern exhibits
an enhanced electron-phonon coupling, which can lead
to a conventional superconductivity with high Tc at cer-
tain twist angles and electron densities. In particular,
our calculation estimates a Tc of order 1K at the magic
angle θ = 1.05◦ around a filling of 2 electrons per super-
lattice unit cell, in agreement with the TBG experiment
[1]. Most importantly, we make the falsifiable prediction
that Tc can be higher at larger electron densities and
certain ranges of the twist angle θ, for instance in the
second Moiré band near θ = 0.6◦, and in the second or
higher Moiré bands for θ & 1◦. This may explain the
possible superconductivity of HOPG where the interface
twist angles are mostly not at the magic angle. Further,
we conjecture the insulating phase at 2 electrons per unit
cell is a Bose Mott insulator [39].

The Moiré superlattice of TBG is shown in Fig. 1a,
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FIG. 1. a. Moiré pattern of the TBG, which has AA, AB
and BA stacking sites (A and B denote the graphene sub-
lattices). b. A uniform displacement u of graphene layer 1
(blue) relative to layer 2 (red) yields a superlattice displace-
ment |ũ| = γ|u| perpendicular to u, where γ = 1/2 tan(θ/2).

where D1 and D2 are lattice vectors of length |Dj | =
a0/[2 sin(θ/2)], and a0 = 0.246 nm is the graphene lattice
constant. The large electron-phonon coupling of TBG
can be intuitively understood from Fig. 1. We denote the
phonon field in TBG layer j (j = 1, 2) as u(j)(r), namely,
the atomic displacement at coordinate r in layer j. We
then define the relative displacement u = u(1)−u(2), and
the center of mass displacement uc = (u(1)+u(2))/2. The
key observation is that for small θ, a small in-plane rela-
tive displacement u significantly affects the superlattice.
When layer 1 of the TBG undergoes a uniform transla-
tion u relative to layer 2 (Fig. 1a), the AA stacking po-
sitions will move by |ũ| = γ|u| perpendicular to u, where
γ = 1/[2 tan(θ/2)] (Fig. 1b). If the relative displacement
u is nonuniform, it will induce a large superlattice de-
formation due to the amplification factor γ ≈ θ−1 � 1
([40, 41] Sec. I). Accordingly, the low energy electrons
will experience a large variation of superlattice poten-
tial, yielding a strong coupling with the in-plane relative
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FIG. 2. a. Illustration of the graphene BZs of two layers,
and their relation to the Moiré BZ. b. Under phonon induced
superlattice deformations, qj are deformed, which leads to
the change in electron band energies.

displacement phonon field u. In contrast, the center of
mass displacement uc has no amplified effect on the su-
perlattice ([41] Sec. I). Therefore, we shall only focus on
the electron-phonon coupling of the relative displacement
field u.

The band structure of the TBG can be calculated us-
ing the continuum model in Ref. [4]. Fig. 2a shows the
graphene Brillouin zones (BZs) of the two layers, which
are relatively twisted by θ. When the two layers are de-
coupled, the low energy electrons of each layer are Dirac
fermions at K and K ′ points, which are described by
Hamiltonian hK(k) = v(σxkx − σyky) = ~vσ∗ · k and

hK
′
(k) = −~vσ · k, respectively. Here σx,y,z are the

Pauli matrices for sublattice indices, ~v ≈ 610 meV·nm
is the graphene Fermi velocity, and momentum k is mea-
sured from the Dirac point. In addition, each Dirac band
has a 2-fold spin degeneracy, and we assume zero spin or-
bit coupling. The K (K ′) points of the two layers differ
by momentum vectors qj (−qj) as shown in Fig. 2a
(j = 1, 2, 3), which constitute the edges of the hexagonal
superlattice Moiré BZ, with |qj | = kθ = 8π sin(θ/2)/3a0.

When the interlayer hopping is introduced, to the low-
est order, the Hamiltonian at valley K and near Moiré
BZ K ′M point (Fig. 2a) takes the truncated form [4]

HK(k) =


hK(k) wT1 wT2 wT3

wT †1 hK(k1) 0 0

wT †2 0 hK(k2) 0

wT †3 0 0 hK(k3)

 , (1)

where k is measured from K ′M point, kj = k − qj (j =
1, 2, 3), the matrices Tj are given by T1 = 1 + σx, T2 =

1 − 1
2σx −

√
3

2 σy, T3 = 1 − 1
2σx +

√
3

2 σy, and w ≈ 110
meV is the nearest momentum hopping amplitude. Near
k = 0 and zero energy, the Hamiltonian (1) can be folded
into a 2× 2 effective Dirac Hamiltonian [4]

H̃K(k) =

(
1− 3α2

1 + 6α2

)
~vσ∗ · k , (2)

where α = w/~vkθ. In total, there are 4 Dirac fermions
at K ′M and 4 Dirac fermions at KM near zero energy,

due to the valley K,K ′ and spin ↑, ↓ 4-fold degeneracy
(further momentum hoppings are needed in Eq. (1) to
obtain the Dirac fermions at KM ). The Dirac fermions at
valley K ′ have opposite helicity, described by replacing
σ∗ · k → σ · k in Eq. (2). The magic angle θ ≈ 1.05◦

is given by α2 = 1/3, where the Dirac Fermi velocity
vanishes. Numerical calculations near the magic angle
show the entire width of the lowest two bands can be as
low as 1 meV [4].

The coupling between electrons and long wavelength
phonons can be obtained by examining the change of elec-
tron band energies under uniform lattice deformations.
Under deformation induced by a relative displacement
u, the momentum vectors qj (Fig. 2b) are deformed

by δq1 = γkθ(∂xux, ∂yux), and δq2,3 = γkθ(±
√

3
2 ∂xuy −

1
2∂xux,−

1
2∂yux ±

√
3

2 ∂yuy) ([41] Sec. I). This induces a
change of kj = k − qj in the Hamiltonian (1), which
perturbs the electron band energies. The variations of v
and w are subleading compared to δqj , and will be ig-
nored here. The variation in Hamiltonian (2), namely,

the electron-phonon coupling, δH̃(k) = Hep(k), can be
derived to be ([41] Sec. I)

Hη,ζ,s
ep (k) = Hη,ζ,s

C3 (k) +Hη,ζ,s
SO(2)(k) ,

Hη,ζ,s
C3 (k) = g1αηγ~vψ†k′ [kx(∂yux + ∂xuy)

+ ky(∂xux − ∂yuy)]ψk ,

Hη,ζ,s
SO(2)(k) = γ~vψ†k′ [g2α(ησxkx − σyky)(∂yux − ∂xuy)

+ g3α(ησxky + σykx)(∂xux + ∂yuy)]ψk ,

(3)

with index η = ±1 for graphene valley K,K ′, ζ = ±1 for
Moiré BZ valley KM ,K

′
M , s = ±1 for spin ↑, ↓, and we

have defined g1α = 9α2(1+3α2)
(1+6α2)2 , g2α = 9α2

(1+6α2)2 and g3α =
3α2

1+6α2 . ψk and ψ†k are the Dirac electron annihilation

and creation operators, and k = (k+k′)/2 is the average
momentum of the electron state before and after phonon
interaction. Note that Hep is independent of ζ and s, and
contains two parts HC3 and HSO(2), which are C3z and
SO(2) rotationally invariant about z axis, respectively.
Besides, Hep respects the TBG 2-fold rotation symmetry
C2x about x axis, which transforms (ux, uy) to (−ux, uy).

We also need to know the phonon spectrum of the
TBG. Previous studies show that in-plane phonons of the
two layers of TBG are nearly decoupled [42]. Therefore,
the TBG in-plane phonon spectrum is approximately
that of two isolated graphene monolayers folded into the
Moiré BZ. The lowest bands of phonon field u thus has
Hamiltonian

Hph =
∑
p

(
~ωp,La

†
p,Lap,L + ~ωp,Ta

†
p,Tap,T

)
, (4)

where ap,L, a†p,L and ap,T , a†p,T are the annihilation and
creation operators of longitudinal and transverse polar-
ized phonons, respectively. The frequencies ωp,L = cLp
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FIG. 3. a. The process two electrons of momentum k and −k
exchanges a phonon of momentum p = k′−k, which mediates
the electron-electron interaction in Eq. (7). b. Illustration
of phonon-induced potentials for electrons at valleys K and
K′ (which can be in different Moiré valleys or the same could

Moiré valley), where US and ±UC3 are contributed by Hη,ζ,s
SO(2)

and Hη,ζ,s
C3 , respectively. The dashed circles represent the

Fermi surfaces. c. Intervalley pairing ∆̃(k) solved numerically
as a function of ϕ(k), which is s-wave ([41] Sec. III).

and ωp,T = cT p are acoustic, with p = |p|. cL, cT are
the longitudinal and transverse sound speeds of mono-
layer graphene. The phonon field u at long wavelengths
is

u(r) =
∑
p

eip·r√
NsΩs

(ip̂up,L + iẑ× p̂up,T ) , (5)

where up,χ =
√

~Ω
2Mωp,χ

(ap,χ+a†−p,χ) for χ = L, T polar-

izations, Ω and Ωs are the unit cell areas of the graphene
lattice and Moiré superlattice, respectively, and Ns is
the number of supercells. There are also many optical
phonon bands in the Moiré BZ corresponding to short
wavelength components of u, but here we will only fo-
cus on the lowest acoustic phonon bands which couple to
electrons via Eq. (3).

Assume the Fermi surfaces are |k| = kF in the
Dirac hole (or electron) bands. The phonon mediated
electron-electron interaction near the Fermi surfaces can
then be calculated perturbatively in the Bardeen-Cooper-
Schrieffer (BCS) channel:

H
(ph)
int =

∑
k,k′

V II
′

kk′ (ω)

NsΩs
c†k′,Ic

†
−k′,I′c−k,I′ck,I , (6)

where I = (η, ζ, s) denotes indices for the eight Dirac
cones, the frequency ω = (ξk′ − ξk)/~ with ξk =

− 1−3α2

1+6α2 ~v(|k|−kF ) being the band energy at k, while ck,I

and c†k,I are electron annihilation and creation operators
in the Dirac hole band I. To simplify the result, we take
the approximation cL = cT (both around 104m/s). For θ
near the magic angle (α2 ≈ 1/3), we find the interaction
in the lowest two Moiré bands is

V II
′

kk′ (ω)

Ωs
≈

~2v2k2
F$

ηη′

kk′

9Mc2T

ω2
p,T

ω2 − ω2
p,T

fηη′(ϕk, ϕk′), (7)

where M is the Carbon atomic mass, p = k − k′,

ϕk = arg(kx + iky) is the polar angle of k, and $ηη′

kk′ =

φη†k′φ
η
kφ

η′†
−k′φ

η′

−k with φηk = (1,−ηe−iηϕk)T /
√

2 being the
Dirac hole band wave function at valley η. The function
fηη′ is given by

fηη′(ϕk, ϕk′) =

 −1− 2 cos(ϕk − ϕk′), (η = η′)∣∣∣1− η e2iϕk−e2iϕk′

e−iϕk−e−iϕk′

∣∣∣2 .(η = −η′)
(8)

The interaction V II
′

kk′ (ω) is independent of spin s and
Moiré valley ζ.

At low energies |ω| < ωp,T , fη,−η > 0 indicates the in-
tervalley interaction between K and K ′ (η = −η′) is at-
tractive. In contrast, fη,η is on-average negative, and one
can prove that the intravalley interaction (η = η′) is re-
pulsive in all pairing channels ([41] Sec. IIC). This is due
to the fact that the hole (or electron) band projections

of Hη,ζ,s
C3 and Hη,ζ,s

SO(2) in Eq. (3) are odd and even under

k,k′ → −k,−k′, or under η → −η, respectively ([41] Sec.
IIC). Assume an electron state (wave packet) |kK,ζ,s〉
around momentum k at valley K experiences a phonon-
induced lattice potential 〈HK,ζ,s

C3 (k)〉 + 〈HK,ζ,s
SO(2)(k)〉 =

UC3 + USO(2). By symmetry, the state | − kK,ζ′,s′〉 at
the same valley K will feel a potential −UC3 + USO(2),

while the state |−kK′,ζ′,s′〉 in the opposite valley K ′ will
feel a potential UC3 + USO(2). Therefore, two electrons

|kK,ζ′,s′〉 and | − kK′,ζ′,s′〉 in opposite valleys feel the
same phonon-induced lattice potential, which induces an
effective attraction between them. In contrast, two elec-
trons |kK,ζ′,s′〉 and | −kK,ζ′,s′〉 in the same valley K feel
different potentials, thus have a weaker or even absent
attraction. Therefore, the intervalley Cooper pairing is
preferred.

Since the interaction is degenerate with respect to in-
dices ζ and s, the intervalley pairing is not yet unique.
Here we simply assume the pairing is time reversal invari-
ant, which is generically more robust under non-magnetic
disorders [43]. This yields an intervalley pairing ampli-
tude of the form ([41] Sec. III)

∆ηη′,ζζ′,ss′

k = sδs,−s′δζ,−ζ′δη,−η′∆̃(ηk) , (9)

where ∆̃(k) is a real function of ϕk = arg(kx + iky). Nu-

merically, ∆̃(k) can be solved and has the shape shown
in Fig. (3)c, which is nodeless and dominated by s-wave.
We note that an earlier optical phonon study [13] ob-
tained both s-wave and d-wave, while a recent atomistic
study supports s-wave [44].

Substituting the realistic parameters into Eq. (7) and
taking kF ∼ kθ, we find that the phonon mediated in-
tervalley attraction is of order −V II′kk′ (0)/Ωs ∼ 1 meV
around the magic angle, which is comparable to the
Fermi energy εF and the Debye frequency of acoustic
Moiré phonon bands ~ωD ∼ ~cT kθ ≈ 2 meV. When



4

(c)

-30 -20 -10 10 20 30
n

0

2

4
N D

 (
s-1

m
eV

-1
)

0 -30 -20 -10 10 20 30
n

0

2

4

0

θ=1.05 θ=1.05(a) (b)

n 0

8

-8

16

-16

24

-24
10.80.60.40.2 21.81.61.41.2
θ

0

0.5

0.2

0.1

1
Tc (K)

FIG. 4. a. The density of states ND as a function of number
of electrons per superlattice unit cell n, showing the lowest
conduction and valence bands are pretty flat. b. The esti-
mated BCS coupling strength λ ≈ ND|Vkk′(0)| as a function
of n. c. The superconducting Tc with respect to n and θ
estimated from the McMillan formula.

the optical phonon contributions are included, the at-
traction could be further enhanced. Since the density
of states (DOS) is as large as ND & 1 meV−1 · Ω−1

s

at the magic angle, the BCS coupling strength λ ≈
ND|V II

′

kk′ | & 1 is strong. The screened Coulomb inter-
action takes the form Ve(q) = 2πe2/qε(q), where ε(q) is
the screened dielectric function at momentum q. Here
we simply adopt the (two-dimensional) Thomas-Fermi
approximation ([41] Sec. III) ε(q) ≈ εI(1 + qTF /q),
where εI ≈ 2 ∼ 10 is the dielectric constant of undoped
graphene, and qTF ≈ 2πe2(∂ne/∂µ)/εI = 2πe2ND/εI
is the Thomas-Fermi momentum (ne and µ are the
electron density and chemical potential, respectively).
With ND & 1 meV−1 · Ω−1

s around the magic angle,
qTF & 50kθ � q, so the screened Coulomb potential
Ve(q) ≈ 2πe2/εIqTF ∼ N−1

D , yielding a Coulomb cou-
pling strength µc ≈ NDVe(q) ∼ 1. If we adopt the
McMillan formula for superconductor Tc [45, 46], taking
λ = 1.5 and µc = 1, we obtain

Tc =
~ωD

1.45kB
exp

[
− 1.04(1 + λ)

λ− µ∗c(1 + 0.62λ)

]
≈ 0.9K (10)

at the magic angle, where µ∗c = µc/[1 + µc ln(ωpe/ωD)]
is the reduced Coulomb coupling strength, ωpe is
the plasma frequency, which is roughly ~ωpe ∼√

(4πne)1/2e2εF /εI ∼ 10~ωD [47, 48]. This agrees well
with the experimentally observed Tc. We do emphasize
that our Tc estimation is very rough, with inaccuracies
from both λ, µ∗c and the McMillan formula itself for large
λ.

The above electron-phonon coupling calculation can be
easily generalized to other twist angles and electron den-

sities. We still keep only the nearest momentum hoppings
in the continuum model of TBG, but truncate the Hamil-
tonian at sufficiently high momentum to obtain more ac-
curate band structures. We then numerically calculate
the energy change in each electron band under small de-
formations of qj , and verify it is comparable to our ab
initio results ([41] Sec. V). Subtracting the contribution
from Moiré BZ deformations ([41] Sec. IV), we can esti-
mate the electron-phonon coupling of each band and the
BCS coupling strength λ ≈ NDVkk.

Fig. 4a and 4b show the DOS ND and BCS coupling
strength λ with respect to the number of electrons per
superlattice unit cell n = neΩs at θ = 1.05◦. The DOS is
predominantly high for the first conduction and valence
bands (|n| < 4). However, the BCS coupling λ for |n| < 4
and for |n| > 4 are of the same order, despite the fact
that the DOS is much lower (ND ∼ 0.05 meV−1 ·Ω−1

s ) at
|n| > 4. This is because, for higher Moiré bands which
have larger band widths, their energy susceptibility to
deformations is also larger. For bands with band widths
EW & w, an order estimation from perturbation theory

yields a BCS coupling strength λ ∼ NDz
2w4

Mc2TE
2
W
∼ 0.5, where

z = 3 is the number of nearest hopping momenta qj ([41]
Sec. IV). This agrees with the numerical magnitude in
Fig. 4b, and implies possible BCS superconductivity at
higher |n|. Fig. 4c shows Tc from the McMillan formula
with respect to angle θ and number of electrons per unit
cell n. There is only a narrow superconducting region at
|n| < 4 near the magic angle, which correspond to the
superconductivity observed in TBG. In contrast, super-
conductivity of order 1K may occur in a wide range of
θ & 1◦ for |n| near 8 and higher, which has not been care-
fully explored yet [49–53], and we expect to be tested in
future experiments. There are also parameter spaces for
θ < 1◦ where Tc is of order of 1K, e.g., 4 . |n| . 8 near
θ = 0.8◦, 2 . |n| . 12 near θ = 0.6◦, and 8 . |n| . 12
around θ = 0.3◦. The vast superconductivity region indi-
cates the Moiré pattern generically enhances the electron-
phonon coupling of all bands, and may explain the pos-
sible superconductivity of HOPG. However, we do note
that other orders such as charge density wave may com-
pete with superconductivity in these parameter regimes.

Lastly, we comment that the strong phonon-mediated
attraction may favor a Bose Mott insulator [39] for the
TBG insulating phase observed at |n| = 2 [1, 2]. This is
because the attraction may pair the electrons into charge
2e bosons (Cooper pairs), and for |n| = 2, the system
has one boson per unit cell, thus may form a Bose Mott
insulator [39], with a possible charge density wave order.
Such a phase will have a resistivity around h/(2e)2 ≈
6kΩ at the superconductor-insulator transition, due to
charge 2e carriers [54–56]. However, the experimentally
observed quantum oscillations [1] indicates these Cooper
pairs have to break down for magnetic fields above 1T, if
this explanation is correct.
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