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We propose a new mechanism of friction in resonantly driven vibrational systems. The form of the
friction force follows from the time- and spatial-symmetry arguments. We consider a microscopic
mechanism of this resonant force in nanomechanical systems. The friction can be negative, leading
to the onset of self-sustained oscillations of the amplitude and phase of forced vibrations, which
result in a frequency comb in the power spectrum.

The physics of friction keeps attracting attention in
diverse fields and at different spatial scales, from cold
atoms to electrons on helium to locomotion of devices
and animals [1–6]. An important type of systems where
friction plays a critical role and where it has been studied
in depth, both theoretically and experimentally, are vi-
brational systems. The simplest form of friction in these
(and many other) systems is viscous friction. For a vi-
brational mode with coordinate q, the viscous friction
force is ∝ q̇. It describes a large number of experiments
on various kinds of vibrational systems, nano- and mi-
cromechanical modes and electromagnetic cavity modes
being examples of the particular recent interest [7, 8].

In vibrational systems, viscous friction is often called
linear friction, to distinguish it from nonlinear friction,
which nonlinearly depends on q and q̇. Phenomenologi-
cally, the simplest nonlinear friction force is ∝ q2q̇ (the
van der Pol form [9]) or ∝ q̇3 (the Rayleigh form [10]).
Both these forms of the force are particularly important
for weakly damped systems. This is because in such sys-
tems the vibrations are nearly sinusoidal, whereas both
forces have resonant components which oscillate at the
mode frequency. Moreover, both forces lead to the same
long-term dynamics of a weakly damped mode and in
this sense are indistinguishable [11, 12].

External driving of vibrational modes can modify their
dissipation. The change has been well understood for
a periodic driving tuned sufficiently far away from the
mode eigenfrequency. Such driving can open new decay
channels where transitions between the energy levels of
the mode are accompanied by absorption or emission of
excitations of the thermal reservoir and a drive quan-
tum ~ωF , with ωF being the drive frequency [13]. This
can lead to both linear [14, 15] and nonlinear friction
[16, 17]. It has been also found that, in microwave cav-
ities and nanomechanical systems, resonant driving can
reduce linear friction by slowing down energy transfer
from the vibrational mode to two-level systems due to
their saturation [18–20].

In this paper we consider nonlinear friction induced by
resonant driving, which significantly differs from other
forms of friction. We show that, in nanomechanical sys-

tems, the proposed friction can become important al-
ready for a moderately strong drive and can radically
modify the response to the drive, including the onset of
slow oscillations of the amplitude and phase of the driven
mode with the increasing drive.

Phenomenologically, a mode with inversion symmetry
driven by a force F (t) = F cosωF t can experience a res-
onant induced friction force (RIFF) of the form

ffRIFF = −ηRIFFF (t)qq̇. (1)

Such force has the proper spatial symmetry, as it changes
sign on spatial inversion (q → −q and F → −F ) and is
dissipative, as it changes sign on time inversion t → −t.
The driving frequency ωF is assumed to be close to the
mode eigenfrequency ω0, so that the force fRIFF has a
resonant component, as F (t), q(t), and q̇(t) all oscillate at
frequencies equal or close to ωF . The friction coefficient
ηRIFF is undetermined in the phenomenological theory.
It can be positive or negative, as the very onset of the
force fRIFF is a nonequilibrium phenomenon. Therefore
fRIFF can either increase or decrease the decay rate, or
even make it negative, in a certain parameter range.

The form of the RIFF reminds the form of the van der
Pol friction force, except that q2 is replaced by F (t)q. In
some sense, the force F (t) is “smaller” than the displace-
ment q near resonance: this is the well-known effect that
a small resonant force leads to large vibration amplitude
for weak damping. Therefore fRIFF can be significant
if there is a mechanism that compensates the relative
smallness of F (t).

For nanomechanical resonators, a simple microscopic
mechanism of the RIFF is heating. The absorbed power
F (t)q̇ leads to a temperature change δT , which can be
relatively large due to the small thermal capacity of a
nanoresonator (generally, the temperature change de-
pends on the coordinates in the resonator [21]). In turn,
the temperature change modifies the resonator eigenfre-
quency ω0, for example, due to thermal expansion, cf.
[22, 23]. To the lowest order in δT , the eigenfrequency
change is δω0 = −λωδT . The coefficient λω depends on
the material and the spatial structures of the mode and
the temperature field.
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In many cases, the relaxation time of the temperature
in the resonator is much longer then the vibration period
tF = 2π/ωF . Then the temperature change is propor-
tional to the period-averaged power,

δT (t) = λT [F (t)q̇(t)]av ≡ λT t−1F

∫ t+tF

t

dt′F (t′)q̇(t′)

(in fact, δT is spatially nonuniform [21]). As a result, the
restoring force −mω2

0q is incremented by fT ,

fT (t) = 2mω0λωλT [F (t)q̇(t)]av q(t) (2)

The force fT (t) is a specific form of the RIFF. The ther-
mal mechanism is not the only RIFF mechanism, but it
is often important, and moreover, the ratio of the con-
ventional nonlinear friction to the RIFF contains a small
parameter [21].

We now consider the dynamics of a driven nanores-
onator in the presence of RIFF. Nanoresonators are of-
ten well described by the Duffing model, which takes into
account quartic nonlinearity [11], but the analysis below
immediately extends to other nonlinearity mechanisms,
cf. [24]. The Hamiltonian of the Duffing oscillator in the
absence of coupling to the thermal reservoir is

H0 =
1

2
(p2 + ω2

0q
2) +

1

4
γq4 − qF cosωF t. (3)

Here p is the oscillator momentum. We scaled the vari-
ables so that the mass is m = 1. For concreteness, we
assume that the Duffing nonlinearity parameter γ is pos-
itive. The driving is assumed resonant, |ωF − ω0| � ω0,
and comparatively weak, so that |γ|〈q2〉 � ω2

0 .
To analyze the behavior on the time scale long com-

pared to ω−1F , one can change to the rotating frame and
introduce slowly varying in time canonically conjugate
coordinate q0 and momentum p0 (the analogs of the
quadrature operators [7])

q(t) + iω−1F p(t) = (ωF )−1/2(q0 + ip0) exp(−iωF t).

In the standard rotating wave approximation (RWA),
from Eq. (3) we obtain Hamiltonian equations for q0, p0
with the time-independent Hamiltonian HRWA,

(q̇0)H = ∂p0HRWA, (ṗ0)H = −∂q0HRWA,

HRWA(q0, p0) = −1

2
δω(q20 + p20) +

3γ

32ω2
F

(q20 + p20)2

− Fq0/2
√
ωF , δω = ωF − ω0. (4)

The value of HRWA gives the quasienergy of the driven
nanoresonator, in the RWA.

It is well-known how to incorporate linear friction into
the RWA-equations of motion starting from both a mi-
croscopic formulation and the phenomenological friction
force −2Γq̇ [25–28]. An extension to the RIFF is straight-
forward. Keeping only smoothly varying terms in the

equations for q̇0, ṗ0, in the case of the heating-induced
RIFF (2) we obtain the following equations of motion:

q̇0 = −Γq0 − JT p20 + ∂p0
HRWA,

ṗ0 = −Γp0 + JT q0p0 − ∂q0HRWA. (5)

Here JT = ω
1/2
F FλωλT /2. In Eq. (5) we have disre-

garded noise. It is typically weak in weakly damped
nanoresonators and leads primarily to small fluctuations
about the stable states of forced vibrations and occa-
sional switching between the stable states in the range of
bistability, cf. [28–34] and references therein; here we do
not consider these effects.

Parameter JT that characterizes the RIFF increases
with the driving amplitude F ; the RIFF also increases
with the vibration amplitude A = [(q20 + p20)/ωF ]1/2.
From Eq. (5), the effects of the RIFF become pronounced

for |JTA|ω1/2
F ∼ Γ and should be seen already for a mod-

erately strong drive if the decay rate Γ due to the linear
friction is small.

If both the linear friction and the RIFF can be disre-
garded, the values (qst, pst) of (q0, p0) at the stationary
states of forced vibrations are given by the conditions
∂q0HRWA = ∂p0

HRWA = 0, which reduce to equations

3γ

8ω2
F

q3st − δω qst = F/2
√
ωF , pst = 0. (6)

The equation for qst has one real root in the range of
F, δω where the oscillator is monostable in the weak dis-
sipation limit or 3 real roots in the range of bistability.
In the latter range, of primary interest for the analysis of
the RIFF is the root with the maximal qst, and in what
follows qst refers to this root. For small Γ and JT = 0
it corresponds to a stable state of forced vibrations at
frequency ωF , as does also the real root qst in the range
of monostability [35]. In the both cases, the considered
(qst, pst) corresponds to the minimum of HRWA.

For JT > 0 the RIFF can lead to an instability of the
forced vibrations. Indeed, to the leading order in Γ, JT ,
the sum of the eigenvalues of Eqs. (5) linearized about
the stable state is −2Γ + JT qst. When this sum becomes
equal to zero, the system undergoes a supercritical Hopf
bifurcation. This means that, for JT qst > 2Γ, the state
of forced vibrations with constant amplitude and phase
becomes unstable. The amplitude and phase oscillate in
time, which corresponds to oscillations of the system in
the rotating frame about (qst, pst).

For small Γ and JT qst (the condition is specified be-
low), one can think of the steady motion in the rotating
frame as occurring with a constant value of the Hamil-
tonian HRWA along the Hamiltonian trajectory (4), see
Fig. 1(a). This value is determined by the balance of
the damping ∝ Γ and the RIFF. The dissipative losses
∝ Γ drive HRWA toward its minimum, whereas the RIFF
pumping increases HRWA. The stable value of HRWA
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can be found by averaging over the trajectories (4) the
equation of motion for HRWA(q0, p0), which follows from
Eq. (5). We denote such averaging by an overline,

U(t) =
1

T(HRWA)

∫ t+T(HRWA)

t

dt′ U
(
t′;HRWA

)
,

where U(t;HRWA) is a function calculated along the tra-
jectory (4) for a given value of HRWA and T(HRWA) is the
period of motion along this trajectory. After straightfor-
ward algebra we obtain from Eqs. (5)

dHRWA/dt

=
1

T(HRWA)

∫
S(HRWA)

dq0 dp0 (−2Γ + JT q0) . (7)

Here, S(HRWA) is the area inside the Hamiltonian tra-
jectory (4) with a given HRWA.

From Eq. (7), the condition of the balance of gain and
loss that gives the stable value of HRWA is

(JT qst/2Γ)K = 1, (8)

where

K = q−1st

∫
S(HRWA)

q0 dq0 dp0

[∫
S(HRWA)

dq0 dp0

]−1
. (9)

Parameter K is the ratio of the rates of decay due to the
linear friction and gain due to the RIFF. The dependence
of K on HRWA is illustrated in Fig. 1(b). Figure 1 is
plotted in the scaled variables Q0, P0 and for the scaled
Hamiltonian hRWA = (6γ/F 4)1/3HRWA,

hRWA =
1

4
(Q2

0 + P 2
0 )2 − 1

2
β−1/3(Q2

0 + P 2
0 )−Q0,

Q0 = q0/ζ, P0 = p0/ζ, ζ = (4F/3γ)1/3ω
1/2
F . (10)

Function hRWA depends only on one dimensionless pa-
rameter, the scaled strength of the driving field

β = 3γF 2/32ω3
F (δω)3. (11)

As seen from Fig. 1(b) and also from Eq. (10), K = 1
where HRWA is at its minimum. Importantly, K mono-
tonically decreases with increasing HRWA in a broad
range of HRWA. This decrease holds both in the range of
β where the oscillator is bistable and where it is monos-
table in the absence of the RIFF. Therefore, in the pres-
ence of the RIFF, once the condition of the onset of os-
cillations in the rotating frame is met, JT qst > 2Γ, these
oscillations are stabilized at the value of HRWA given by
K ≡ K(HRWA) = 2Γ/JT qst. We emphasize that the fre-
quency of these oscillations 2π/T(HRWA) is small com-
pared to ωF , yet it exceeds Γ and JT qst.

Parameter JT qst depends on the amplitude of the driv-
ing field F and the frequency ωF . By varying F and ωF

-3 -2 -1 0
0.4

0.7

1

hRWA

K

β=2/27

(b)

FIG. 1. (a) The Hamiltonian trajectories (4) for different

values of the scaled RWA energy hRWA = (6γ/F 4)1/3HRWA,
Eq. (10). The scaled field strength defined in Eq. (11) is
β = 2/27. The driven oscillator is bistable for this β, and
shown are the trajectories that circle the large-amplitude state
at the minimum of hRWA, (Q0 ≈ 1.72, P0 = 0). This state
becomes stable in the presence of weak linear friction. For
other values of β, the trajectories near the minimum of hRWA

also have a horse-shoe form. (b) The scaled ratio of the decay
and gain rates K, Eq. (9), as a function of hRWA.

one can control the stable value of HRWA and thus the
amplitude and frequency of the oscillations in the rotat-
ing frame. Remarkably, these oscillations become sig-
nificantly nonsinusoidal already for comparatively small
difference between HRWA and its minimal value. This is
seen in Fig. 1(a). The profoundly non-elliptical trajecto-
ries are a signature of nonsinusoidal vibrations. Formally,
the oscillations are described by the Jacobi elliptic func-
tions [36], which allows finding their Fourier components
in the explicit form [21].

The instability of the forced vibrations at the drive
frequency and the onset of nonlinear self-sustained oscil-
lations in the rotating frame lead to a qualitative change
of the power spectrum of the driven oscillator. There
emerge multiple equally spaced peaks on the both sides
of ωF that correspond to the vibration overtones in the
rotating frame. This frequency comb effect occurs for an
isolated mode and is thus qualitatively different from the
frequency combs resulting from a linear [37] or nonlinear
[38] resonance between vibrational modes in the presence
of Duffing nonlinearity.

The spacing between the frequency comb peaks
2π/T(HRWA) is small compared to ωF . The widths of
the peaks are determined by phase diffusion due to the
noise in a nanoresonator, in particular, thermal fluctu-
ations of HRWA around its stable value and the related
fluctuations of the frequency 2π/T(HRWA). These fluc-
tuations are efficiently averaged out by the relaxation,
the process reminiscent of motional narrowing in NMR
[28, 39]. Therefore the widths of the peaks should be
much smaller than the damping rate Γ [40].

In conclusion, we have shown that, from the symmetry
and resonance arguments, a resonantly driven vibrational
mode can experience a specific friction force. This force,
the RIFF, is nonlinear in the mode coordinate and ex-
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plicitly depends on the driving force. The RIFF can be
negative. In this case, already for a moderately strong
resonant drive, it can lead to an instability of forced vi-
brations of a weakly damped nonlinear mode, qualita-
tively modifying the response of such a mode to the drive.
The instability causes the onset of self-sustained oscil-
lations of the vibration amplitude and phase. In turn,
this leads to a frequency comb in the power spectrum of
the driven mode. The effect is general and may emerge
in various vibrational systems. We have shown that, in
nanomechanics, an important microscopic mechanism of
the RIFF is associated with the driving-induced spatially
nonuniform heating of a nanoresonator and the resulting
change of the mode eigenfrequency.
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