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Laser dynamics encompasses universal phenomena that can be encountered in many areas of
physics, such as bifurcation and chaos, mode competition, resonant nonlinearities, and synchroniza-
tion – or locking – of oscillators. When a locking process occurs in a multimode laser an optical
frequency comb is produced, which is an optical spectrum consisting of equidistant modes with a
fixed phase relationship. Describing the formation of self-starting frequency combs in terms of fun-
damental laser equations governing the field inside the cavity does not allow, in general, to grasp how
the laser synchronizes its modes. Our finding is that in a particular class of lasers where the output is
frequency-modulated with small or negligible intensity modulation, a greatly simplified description
of self-locking exists. We show that in quantum cascade lasers – solid-state representatives of these
lasers characterized by an ultra-short carrier relaxation time – the frequency comb formation obeys a
simple variational principle, which was postulated over 50 years ago and relies on the maximization
of the laser output power. The conditions for the breakdown of this principle are also experimentally
identified, shedding light on the behavior of many different types of lasers, such as dye, diode and
other cascade lasers. This discovery reveals that the formation of frequency-modulated combs is an
elegant example of optimization problem solved by a physical system.

In various solid-state and gas lasers, multiple modes
can reach the lasing threshold and oscillate simultane-
ously. These modes are in general not independent of
each other but instead are coupled through a nonlinear
process, such as nonlinear gain saturation of the laser
medium [1] or nonlinear absorption of a saturable ab-
sorber [2], if one is present in the cavity. Mode coupling
leads in turn to a well-defined phase relationship among
the modes giving origin to an optical frequency comb [3–
7]. These relative phases could be in principle determined
by solving the coupled nonlinear equations governing the
field inside the cavity, known as Lamb’s self-consistency
equations [8, 9], but this is a non-trivial task even for the
basic case of a field constituted by three modes. In the
1960’s Statz, DeMars and Tang, motivated by their ob-
servation of spiking in ruby lasers [10], investigated self-
locking in multimode lasers and proposed a simplified
description of this process [11, 12]. This was formulated
as the “maximum emission principle” (MEP) and stated
that the laser operates in such way as to maximize the
mean optical power output from the device [13, 14]. This
condition corresponds to the fastest growth of stimulated
emission and thus should be established most rapidly in
the laser. In terms of laser performance, it implies that
the linewidth of all the modes of the frequency comb is
minimized, as this is inversely proportional to the total
output power of the laser [15, 16]. The MEP can be
understood as follows. Consider a multimode field rep-
resented by a sinusoidally-modulated waveform of period
Trep impinging on a slab of gain medium (Fig. 1a). The
dynamic response of the population inversion in the gain
medium to the intensity modulation will depend, in first

approximation, on how the carrier relaxation time (T1)
of the medium compares with Trep. Figure 1b shows two
limiting cases: when Trep � T1 the population inversion
shows large oscillations in anti-phase with the intensity,
in this situation the mean extracted power is maximized
for zero modulation depth; on the other hand, when Trep
is of the order of T1 the phase delay between the pop-
ulation inversion and the intensity decreases to a value
close to π/2 and the amplitude of population oscillations
is suppressed, in this case the power extraction is inde-
pendent of the modulation depth. In essence, the MEP
can be regarded as a variational principle stating that
the type of waveform chosen by the laser is the one max-
imizing the laser output power (Supplementary Sec. 2
including Ref. [17]).

Despite its intuitive appeal, the MEP is not true in gen-
eral. In 1969 Schwarz and Gordon [18] employed the for-
malism of classical mechanics to re-express Lamb’s self-
consistency equations [8] as the equations of motion of
a dynamical system, where the generalized coordinates
correspond to the set of complex amplitudes of the laser
A = (A1, ..., An), each giving the modulus and phase of
a laser mode. Using a variational method they restated
the equations of motion of the laser as an extremum con-
dition, which is essentially a modified form of Hamilton’s
principle of least action: the laser describes a trajectory
in configuration space that minimizes a path integral [18]
under small changes δA (Fig. 1c). With this approach
the authors showed that in general the extremum condi-
tion does not coincide with the MEP. However, they also
obtained that in presence of restrictive hypotheses — in
particular, if one assumes infinitely short T1 — then the
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FIG. 1. Laser self-locking in terms of a variational
principle. a, An intensity modulated wave with period Trep

impinges on a slab of laser gain medium, represented as a two-
level system with carrier relaxation time T1, and becomes am-
plified. This modulation typically results from locking of the
laser cavity modes. For simplicity, the resonator mirrors and
the waveform circulation in the laser cavity are not shown.
b, Depending on how Trep compares with T1 the population
inversion in the gain medium responds with a different am-
plitude and phase delay ∆φ to the intensity modulation. The
power extracted from the gain medium and averaged over Trep

is plotted as a function of the intensity modulation depth
(Imod) for two limiting cases: Trep � T1 (blue), Trep ∼ T1

(red). According to the maximum emission principle, the
laser optimizes the phase relationship among its modes in
order to maximize the extracted power. When Trep � T1 this
is equivalent to minimizing Imod. c, The equations governing
the field inside the laser cavity can be rewritten as the equa-
tions of motion of a dynamical system, where the generalized
coordinates are the complex amplitudes of the laser (A), cor-
responding to modal amplitudes (top) and phases (bottom),
which are arbitrarily chosen here for illustration. Based on
this formalism the system describes a trajectory in configu-
ration space which satisfies a variational principle, for small
perturbations of the motion δA. Due to the periodic output of
frequency combs, the trajectory is a loop covered in a period
Trep. d, Characteristic time scales of the repetition period
(Trep) and effective carrier relaxation time under operation
(T1) of different types of lasers: solid-state (red), semicon-
ductor (blue), gas (orange) and dye (green) lasers.

MEP and Hamilton’s principle result in identical equa-
tions.

An infinitely short T1 is a theoretical limit. This con-
dition can be restated in terms of real laser parameters as
Trep � T1, where Trep is the characteristic period of inter-
modal beats, usually given by the roundtrip time of the
laser [19] (Supplementary Sec. 5 including Refs. [20, 21]).
Figure 1d illustrates typical time scales of these parame-
ters for common lasers [19, 22]. The carrier lifetime can
be shortened by the presence of light in the cavity due to
stimulated emission [23, 24]; here T1 indicates the effec-
tive carrier lifetime under laser operation. Clearly, the
hypothesis required for the validity of the MEP does not
hold in ruby lasers due to their slow population relaxation
(≈1 ms) – much longer than their roundtrip time (≈1 ns)
– neither it does in other solid-state lasers (e.g. Nd:YAG,
Ti:Sapphire) or in molecular lasers (e.g. CO2). Also ap-
pearing in Fig. 1d is a number of lasers which exhibit a
short carrier relaxation time and lie in proximity of the
T1 = Trep line. Some of these are conventional semi-
conductor lasers (e.g. InGaAs-based diode lasers), while
others are known as adiabatic or class-A lasers [19, 25].
Examples of these lasers are He-Ne, Ar+, rhodamine-
6G, quantum cascade and interband cascade lasers (the
latter have been shown to exhibit a fast dynamics only
recently [26]). Some experimental studies based on dif-
ferent autocorrelation techniques in rhodamine-6G dye
lasers [27], InAs-based Q-dash lasers [28] and interband
cascade lasers [26] indicated that their output is predom-
inantly frequency-modulated [24] and intensity modula-
tion tends to be suppressed, in agreement with the MEP.
However, in the region of the (Trep, T1) scatter plot cor-
responding to these lasers the MEP is at the limit of its
applicability and it is thus difficult to reach unambiguous
conclusions on its validity.

Quantum cascade lasers (QCLs) are on the other hand
an ideal model system to study the MEP as they feature
a unique combination of physical properties. In addi-
tion to an ultra-short T1 (≈1 ps) [29], these lasers ex-
hibit homogeneously broadened transitions and spatial
hole burning effects [30], allowing multimode operation,
and a resonant third-order nonlinear susceptibility, en-
abling a variety of frequency comb regimes with different
Trep [1, 31]. In this work we study the temporal na-
ture of QCL frequency combs with different frequency
separation between the modes by means of nonlinear au-
tocorrelation experiments. After retrieval of the modal
phases we obtain that when the hypothesis Trep � T1
is satisfied the phase relationship chosen by the laser is
such to minimize intensity modulation, thus constituting
the first definite experimental verification of the MEP.

We begin by investigating QCLs operating in the har-
monic frequency comb regime [32, 33], where, differ-
ently from dense frequency combs, the repetition rate
Trep = Trt/N is a fraction of the cavity roundtrip time
Trt given by the number N of skipped free spectral ranges
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FIG. 2. Quantum cascade laser harmonic frequency comb obeying the maximum emission principle. a, Au-
tocorrelation measurement of a quantum cascade laser. The set-up consists of a Michelson interferometer. When a linear
photodetector (1-PD) measures its output as a function of interferometric delay, the linear autocorrelation trace is obtained.
Its Fourier transform gives the optical spectrum of the laser, which shows a harmonic frequency comb with 8 FSR (44 GHz)
skipped between the lasing modes. When the output of the interferometer is measured using a quadratic photodetector (2-PD)
the second-order autocorrelation trace is obtained. Combining these measurements with a phase retrieval algorithm allows one
to reconstruct the temporal waveform of the laser. b, Amplitude, temporal phase and instantaneous frequency (shifted by the
carrier frequency of the laser, fc) of the time-domain waveforms as obtained from the experimental reconstruction and from
the best solution found by an optimization algorithm. c, The optimization algorithm takes the spectrum of the laser and a
random choice of the modal phases (φ̂random, here an example is shown) and finds the local minimum of the objective function
σI/〈I〉, where σI and 〈I〉 are the standard deviation and average over Trep of the time-domain intensity. This is equivalent to
searching the set of modal phases that minimizes intensity modulation and maximizes the laser output power. Also shown is
a histogram representing the minima found over 10 000 random searches. d, Illustration of the harmonic waveform circulating
inside the laser cavity. In this example the repetition period (Trep) is 1/5 of the cavity roundtrip time (Trt).

(FSR) between the lasing modes (Fig. 2d). The carrier
relaxation time of these devices is T1 = 0.6 ps, as cal-
culated from bandstructure simulations. Our characteri-
zation of the laser waveform relies on a second-order au-
tocorrelation measurement [34] (Fig. 2a). The set-up is
based on a Michelson interferometer. When a linear de-
tector is placed at its output the optical spectrum of the
QCL is obtained. Fig. 2a shows the harmonic frequency
comb generated by the first studied device, exhibiting a
spacing of 8 FSR (44 GHz, Trep = 23 ps). When the
output is measured by a quadratic detector, the second-
order autocorrelation trace is obtained. These measure-
ments constitute a sufficient dataset to reconstruct the
temporal waveform of the laser by means of a phase re-
trieval algorithm [35] (Supplementary Secs. 1,4 including
Refs. [36–44]). The reconstructed waveform is shown in
Fig. 2b. A nearly constant amplitude is observed, to-
gether with an approximately linear frequency chirp — a
feature also seen in dense QCL frequency combs [45, 46].

The temporal character of the laser output depends on
the type of phase relationship existing among the modes
of the frequency comb. For instance, if a linear phase re-
lationship is arbitrarily imposed to the modes of the ex-
perimental spectrum, the laser waveform becomes a train

of transform-limited pulses with a peak-to-background
intensity ratio of 100 (Supplementary Fig. S5a). This
raises the following question: how does the laser set its
modal phases? According to the MEP, since Trep � T1
for this device, it should operate in such way as to min-
imize intensity modulation (Fig. 1b). We want to verify
this statement. In principle one could think that both
modal amplitudes and phases are degrees of freedom of
the system, on which the laser can act to minimize in-
tensity modulation. If this were the case ideal solutions
would be represented by frequency modulated (FM) and
phase modulated waves with constant amplitude, which
have well defined spectra. For instance, in the case of
FM waves the spectrum is given by Bessel functions [47].
However, we argue that the laser cannot attain these ideal
regimes due to constraints on the amplitudes, which orig-
inate from the specific gain profile of the laser and mech-
anism of multimode generation and frequency comb for-
mation. Instead, the problem we want to solve is to find,
given the experimental spectrum of the laser, the best set
of modal phases which minimizes amplitude modulation.
For this purpose we implement an optimization algorithm
whose objective function [48] is σI/〈I〉, where σI is the
standard deviation of the time-domain intensity and 〈I〉
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FIG. 3. The maximum emission principle starts los-
ing its validity. a, Phase (top) and real part (bottom) of

the third-order nonlinear susceptibility χ(3) as a function of
modulation frequency calculated using the experimental laser
parameters. The marker indicates the fundamental modula-
tion frequency of the studied laser frequency comb having an
intermodal spacing of 1/Trep = 156 GHz. b, Spectrum of the
QCL operating in the harmonic regime. c, Amplitude, tem-
poral phase and instantaneous frequency of the time-domain
waveforms obtained from the experimental reconstruction and
from the best solution found by the optimization algorithm.
Differently from the case shown in Fig. 2, here the reconstruc-
tion and optimization results do not match, indicating that
the maximum emission principle stops providing accurate pre-
dictions.

its time-averaged value over Trep. The algorithm starts
from a random guess for the modal phases (Fig. 2c),
then computes the time-domain electric field by inverse
Fourier transform to evaluate the objective function and
proceeds iteratively until it finds a local minimum (Sup-
plementary Sec. 1). After 10 000 random searches we
find that the best solution of the optimization problem
closely matches the experimentally reconstructed wave-
form, both in terms of the value of the objective function
(7% in the optimization, 9% in the reconstruction) and
the type of frequency chirp (Fig. 2b). This finding indi-
cates that the complex process of self-locking in the laser
obeys the MEP.

Next, we want to investigate how the laser operates
when the hypothesis Trep � T1 is not satisfied. For this
study we utilize a second QCL having the same T1 of the
device studied above, but operating in a harmonic fre-
quency comb regime with a spacing of 156 GHz (28 FSR,
Trep = 6 ps, Fig. 3b). The phase and amplitude of pop-
ulation oscillations in the laser are determined by the
phase and real part of the third-order nonlinear suscep-
tibility [32], usually denoted as χ(3). These quantities
are calculated as a function of modulation frequency as

shown in Fig. 3a, where we marked, in particular, the χ(3)

response corresponding to a temporal modulation with
period Trep (Supplementary Sec. 5). The main point to
stress here is that in this frequency comb regime the pop-
ulation inversion can no longer follow the intensity modu-
lation exactly in anti-phase. As the MEP cannot be rigor-
ously derived from the fundamental Hamilton’s principle,
and thus should start losing its validity [18]. Figure 3c
shows the temporal waveform emitted from the QCL,
which has been reconstructed using the same technique
presented above. The intensity modulation depth is 16%
and the frequency chirp exhibits irregular oscillations.
Interestingly, by carrying out the same optimization rou-
tine described above we find that a set of modal phases
exists that gives a considerably smaller intensity modu-
lation depth (3%) than the experimentally measured one
(Fig. 3c). This result shows that with increasing ratio of
T1/Trep the MEP provides predictions that are increas-
ingly less accurate (cf. Fig. 2b and Fig. 3c). The laser
behavior observed here, in particular the fact that ampli-
tude modulation is not perfectly minimized, is expected
to be representative of other types of lasers operating in
a similar region of the scatter plot of Fig. 1d, i.e. close
to the T1 = Trep line.

To further generalize our findings, we turn our atten-
tion to dense frequency combs of QCLs, in which Trep is
fixed by Trt and is typically of the order of hundreds of pi-
coseconds, thus much larger than the sub-picosecond T1.
We analyze the case of a self-locked mid-infrared QCL
frequency comb (Trep = 115 ps), whose waveform is re-
constructed using a coherent beat note spectroscopy tech-
nique [45, 46], giving an intensity modulation depth of
22% and a linear frequency chirp (Supplementary Sec. 6
including Refs. [49, 50]). We want to verify by means of
an optimization algorithm whether the phase relationship
chosen by the laser gives a minimal intensity modulation,
as predicted by the MEP. This task is computationally
more demanding with respect to the case of harmonic
frequency combs since the much larger number of lasing
modes characteristic of dense frequency combs (typically,
hundreds) simultaneously increases the dimension of the
configuration space and the typical iteration time of the
algorithm (approximately by a factor 1 000). The best
solution found over 1 000 random searches lies in close
proximity of the experimental results in terms of inten-
sity modulation depth (Supplementary Sec. 6) indicat-
ing that, to the best of our computation capabilities, the
laser obeys the MEP also when operating in the dense
frequency comb regime. Even though it has been known
for some time that intensity tends to be suppressed at the
output of QCLs [51], our studies provide a quantitative
analysis of this behavior and allow one to explain it on
the basis of a variational principle that can be directly
deduced from the fundamental laser equations [18].

This work shows that a complex physical system re-
sponding to a simple variational principle can be recast
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as an optimization problem. This notion of the world
acting as an analog computer inspired scientists work-
ing in many different fields. For instance, such vision
led Feynman to propose a universal simulator based on
quantum processes [52]. In general, the goal of such opti-
mization problems, is to minimize an objective function
of many variables, which may be subject to additional
equality or inequality constraints. A random search of
the global minimum could take an enormously long time
when the number of variables is large — a concept ex-
emplified by Levinthal’s paradox in the theory of protein
folding [53] — since the number of local minima typ-
ically increases exponentially with the dimension of the
configuration space. It is thus fascinating that frequency-
modulated combs solely responding to fundamental laws
can succeed as analog optimization problem solvers.
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233 (2002).

[4] S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
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