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We calculate the force between two sphericalmetal nanoparticles of chargeQ1 and Q2 in a dilute 1:1 electrolyte
solution. Numerically solving the non-linear Poisson-Boltzmann equation, we find that metal nanoparticles
with the same sign of charge can attract one another. This is fundamentally different from what is found
for like-charged, non-polarizable, colloidal particles, the two body interaction potential for which is always
repulsive inside a dilute 1:1 electrolyte. Furthermore, existence of like-charge attraction between spherical
metal nanoparticles is even more surprising in view of the result that such attraction is impossible between
parallel metal slabs, showing the fundamental importance of curvature. To overcome a slow convergence of
the numerical solution of the full non-linear Poisson-Boltzmann equation, we developed a modified Derjaguin
approximation which allows us to accurate and rapidly calculate the interaction potential between two metal
nanoparticles, or between a metal nanoparticle and a phospholipid membrane.

Metal nanoparticles suspended in an electrolyte solu-
tion have attracted a lot of attention for various applica-
tions1–10. Because of their strong affinity for biological
surfaces and compatibility with immune system11, gold
nanoparticles are being used for cancer treatment and
drug delivery12–14. They have also found applications
in catalysis15,16 and optics17,18. Unfortunately our the-
oretical understanding of the interactions between metal
nanoparticles inside an electrolyte solution is rather lim-
ited. Gold nanoparticles are often synthesized using cit-
rate as a stabilizing agent19,20, resulting in a polydisperse
suspension of negatively charged nanoparticles at pH 7.
When such particles are in vicinity of one another, in ad-
dition to the direct Coulomb force between the two par-
ticles, there is an additional interaction arising from the
induced charge on the metal cores. The induced charge
is non-uniformly distributed over the metal cores, but its
net amount is zero for each particle. As the two nanopar-
ticles approach one another, both the surface charge dis-
tribution and the electrostatic potential on each particle
change with the distance of separation. Most theoret-
ical works on colloidal suspensions ignore the effects of
polarizability and treats the particle surface charge dis-
tribution as fixed and uniform21. There are, however,
some recent works which explore effects of charge regu-
lation22 and patchiness22–26 on the interaction between
planar surfaces, the physics behind such systems, how-
ever, is quite different from the polarizability effects that
we will be interested to explore in the present Letter. Re-
cent computational methods try to mimic the behavior
of metallic materials using parametrized Lennard-Jones
particles9,27. With the exception of metal planar sur-
faces6,28, the direct implementation of proper electro-
static boundary conditions in simulations using Green
function methods is very complicated, requiring the use
of computationally very demanding boundary elements
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methods in order to account for polarization effects29,30.

It is well known that like-charged colloidal particles
can attract one another if suspension contains multi-
valent counterions21,31–42. This attraction results from
the electrostatic correlations between the double layers
of condensed multivalent counterions21. On the other
hand, it is also believed that no such attraction is possi-
ble in electrolyte solutions with only 1:1 electrolyte43,44

for which correlation effects are negligible and the mean-
field Poisson-Boltzmann (PB) equation is almost exact21.
Absence of like-charge attraction for non-polarizable col-
loidal particles has been confirmed using explicit Monte-
Carlo simulations45. Furthermore, it can be shown ex-
plicitly that like-charged parallel metal slabs inside a di-
lute 1:1 electrolyte always repel one another. Contrary
to all of the above, in this Letter we will show that two
spherical like-chargedmetal nanoparticles can attract one
another in a dilute 1:1 electrolyte solution. The sur-
prising attraction is a consequence of the polarization of
the metal cores and is similar to the attraction between
charged conducting spheres in vacuum46,47. The polar-
ization induced like-charge attraction should be very im-
portant for the interaction between charged gold parti-
cles and phospholipid membranes – a situation of great
practical importance in medical applications48,49.

We start by considering the interaction between two
parallel infinite metal slabs of width d and total surface
charge densities 2σ1 and 2σ2, separated by a surface-to-
surface distance L, as shown in Fig. 1(a). Both faces of
the metal slabs are charged. The charge on each face will
adjust itself so as to minimize the total free energy of the
system. When L → ∞, both faces of slab 1 will have the
same surface charge density σ1, and of slab 2, σ2.

For dilute 1:1 electrolyte solutions, electrostatic corre-
lations between the ions are negligible and the mean field
PB equation is quasi exact. To calculate the force be-
tween two metal slabs separated by the surface-to-surface
distance L we must solve the non-linear PB equation

ǫ∇2φ = 8πqρS sinh [−βqφ] , (1)
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FIG. 1. (a) Two infinite metal slabs of width d and total
charge density 2σ1 and 2σ2, respectively. σa,b,c,d represent
the surface charge densities on the faces of the two slabs. The
values of σa,b,c,d change depending on the separation between
the slabs, while the total charge density on each slab remains
fixed. (b) Two like-charged spherical metal nanoparticles of
charge Q1 and Q2 and radius a, separated by a surface-to-
surface distance L, in an electrolyte solution of concentration
ρS.

where φ is the electrostatic potential, q is the elementary
charge, ǫ is the dielectric constant of water, and β =
1/kBT . The Bjerrum length is defined as λB = βq2/ǫ =
7.2 Å, the value for water at room temperature. Inside
the metal, the electric field must vanish, so that each
slab is an equipotential volume. This means that the
contact density of ions on both faces of a slab is identical
and the kinetic contribution to the disjoining pressure P
must vanish. The pressure is then determined only by
the electric stress

βP (L) = βǫEout(L)
2/8π − βǫEin(L)

2/8π , (2)

where Ein and Eout are the electric fields at the interior
and exterior surfaces of a slab. By the superposition, for
two like-charged metal slabs |Eout| > |Ein|, so that the
pressure will always be repulsive. This is demonstrated
in Fig. 2, where we have numerically solved the PB equa-
tion using using 4th order Runge-Kutta and explicitly cal-
culated the pressure between various like-charged metal
slabs.
We next consider two metal nanoparticles depicted in

Fig. 1(b) inside a 1:1 electrolyte solution of concentra-
tion ρS . Both particles have radius a and charge Q1

and Q2, respectively. The surface-to-surface separation
is again L. To solve Eq. 1 we now use a relaxation method
in cylindrical coordinate system and define the following
boundary conditions: φ(∞, z) = φ(r,±∞) = φ′(0, z) =

FIG. 2. The pressure between different like-charged metal
slabs of width d = 10Å, and the charge indicated in the figure,
separated by a distance L. The pressure is always repulsive,
independent of the charge on each slab. The salt concentra-
tion is 100 mM.

0, φ|S1
= φ1 and φ|S2

= φ2 where φ1 and φ2 are a pri-

ori unknown electrostatic potentials inside the nanopar-
ticles 1 and 2, respectively. Starting from an initial guess
for the values of φ1 and φ2, our algorithm performs a
search for the potentials φ1 and φ2 until the charge on
each nanoparticle — calculated using the Gauss law,
Q = − ǫ

4π

∮

S′
E · dS′, where E = −∇φ(r, z) is the electric

field and S′ is the nanoparticle surface — agrees with the
initially specified value of Q1 and Q2. The electrostatic-
entropic force per unit volume is f = ∇ ·Π, where Π is
the entropic-electromagnetic stress tensor

Πij= −p(r, z)δij +

ǫ

4π

[

Ei(r, z)Ej(r, z)−
1

2
E2(r, z)δij

]

. (3)

The kinetic pressure is p(r, z) = kBTρS(e
−βqφ(r,z) +

eβqφ(r,z)), and E(r, z) and Ei(r, z) are the modulus and
the components of the electric field, respectively. The
force can be expressed in terms of an integral of the stress
tensor over an arbitrary surface enclosing one of the par-
ticles, F =

∮

ẑ ·Π · n̂dA . Choosing the boundary surface
to be a cylinder of radius a and length 2a we obtain

βF = 2π

∫ a

0

dr r

[

ρSe
−βqφ(r,L/2) + ρSe

βqφ(r,L/2) −

ρSe
−βqφ(r,L/2+2a) − ρSe

βqφ(r,L/2+2a) +

βǫ

8π

[

E2
r (r, L/2)− E2

z (r, L/2) +

E2
z (r, L/2 + 2a)− E2

r (r, L/2 + 2a)
]

]

+

2πa

∫ L/2+2a

L/2

dz
βǫ

4π
Er(a, z)Ez(a, z) ,(4)

where the positive sign of the force signifies repulsion
between the nanoparticles. The results of the numeri-
cal integration are shown as symbols in Fig. 3(a). We
find that the interaction between two like-charged spher-
ical metal nanoparticles inside a 1:1 electrolyte solution



3

FIG. 3. (a) Electrostatic-entropic force between two like-
charged metal nanoparticles of radius a = 50 Å and charge
Q1 = −67q and Q2 = −67q, −31q and −6q — orange, violet
and green curves, respectively — in electrolyte at 40 mM. Pos-
itive force is repulsive and negative is attractive. The squares
are forces calculated numerically using PB equation in cylin-
drical coordinates and Eq. 4, the lines are calculated using the
modified Derjaguin approximation, Eq. 6. (b) Electrostatic-
entropic force — calculated using the modified Derjaguin
approximation, Eq. 6 — between two like-charged metallic
nanoparticles of radius a = 200 Å and charges Q1 = −4775q
and various values of Q2. Salt concentrations as indicated in
the figure.

can be either attractive or repulsive, depending on their
relative charge and electrolyte concentration! This is
quite surprising in view of our previous result showing
that like-charge attraction is impossible between parallel
metal slabs. The curvature of nanoparticles, therefore,
plays a fundamental role for existence of like-charge at-
traction.
Unfortunately the relaxation method that we devel-

oped to calculate the interaction force between two metal
nanoparticles is quite expensive of CPU time. To obtain
accurate results requires a very fine mesh, which makes
the convergence very slow, in particular for large parti-
cles and low salt concentrations. Furthermore if one of
the charged objects is non metal, such as say a phos-
pholipid membrane, significant modifications to the al-
gorithm must be made, since in this case the surface of
such object will no longer be equipotential. In order to
overcome these difficulties we have developed a modified
Derjaguin approximation, which allows us to efficiently
calculate the interaction potential between two metal
nanoparticles or between a nanoparticle and a charged
planar surface.
Derjaguin approximation allows one to calculate the

interaction force between spherical particles, if the cor-
responding expressions are known for the interaction be-
tween planar objects. Consider two infinite metal slabs
of width d and total surface charge densities 2σ1 and
2σ2, separated by a surface-to-surface distance L, as de-
picted in Fig. 1(a). Both faces of each metal slab are

charged, with the surface charge on each face depend-
ing on the separation between the slabs, while the to-

tal surface charge on each slab is fixed. The values of
σ1,2 are not precisely the surface charge densities on the
corresponding spherical nanoparticles. The nanoparti-
cle surface charge density must be renormalized in order
to account for the curvature effects. This is done by de-
manding that for large L → ∞, the electrostatic potential
of a metal slab should be the same as for the correspond-
ing nanoparticle. This renormalized surface charge will
then produce the same electric field in the vicinity of a
slab as exists near a spherical nanoparticle. The sur-
face potential φsp of an isolated spherical particle with
a surface charge density σsp can be easily calculated by
numerically solving the PB equation in spherical coor-
dinates. Once this is known, the corresponding surface
charge density on each face of an isolated slab σsl, can be
calculated using the analytical solution of PB equation
for a charged plane50,

σsl =

√

2ρSǫ

πβ
sinh (

βqφsp

2
) . (5)

This provides a mapping between the surface charge den-
sities of spherical nanoparticles and of metal slabs, σ1,2,
used in Derjaguin construction.
In the spirit of Derjaguin approximation, we now dis-

cretize the spherical surfaces of each nanoparticle into
parallel planar slabs. If the disjoining pressure P (l) be-
tween the slabs separated by a surface-to-surface distance
l is known, the total force between spherical nanoparti-
cles can be calculated as50,

βF = πa

∫

∞

L

P (l)dl . (6)

The expression for P (l) is the same as in Eq.(2). The
validity of Derjaguin approximation is restricted to,
L/a << 1 and κa >> 1, where κ =

√
8πλBρS is the

inverse Debye length51. For metal nanoparticles there
is an additional complication since the slabs belonging
to the same nanoparticle must be equipotential. How-
ever, we do not know a priori what this potential is,
since it depends on the separation between the nanopar-
ticles. However, we do know that the total charge on each
nanoparticle is fixed, independent of separation, which
means that the total charge on the slabs that compose a
nanoparticle must also be conserved. This results in two
constraints which determine the electrostatic potentials
of metal slabs when the nanoparticles are at surface-to-
surface separation L,

∫ L+2a

L

[

σa(l) + σb(l)− 2σ1

]

dl = 0 ,

∫ L+2a

L

[

σc(l) + σd(l)− 2σ2

]

dl = 0 . (7)

Note that each slab of our modified Derjaguin approxi-
mation has a different surface charge, while all the slabs
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corresponding to the same nanoparticle have the same
electrostatic potential, which changes with L. To cal-
culate the disjoining pressure, we first guess the value of
the electrostatic potential on each slab, φguess

1 and φguess
2 .

Since the electric field inside the metal slabs is zero, the
surface charge on the two external faces, see Fig. 1(a),
can be calculated analytically from the exact solution of
the PB equation50,

σa,d =

√

2ρSǫ

πβ
sinh

(

βqφguess
1,2

2

)

. (8)

To calculate the charge on the interior faces, we numeri-
cally integrate the one dimensional PB equation using 4th

order Runge-Kutta. The surface charges σb,c can then be
obtained using the electric field and the Gauss law. The
values of φguess

1 and φguess
2 are then adjusted until the

constraints given by Eqs. 7 are satisfied. In practice, this
is done using the Newton-Raphson or some alternative
root-finding algorithm.
In Fig. 3(a) the forces calculated using Eq. 4 and Eq. 6

are compared. The agreement is very good, showing that
the modified Derjaguin approach provides an excellent
approximation for calculating the force between metal
nanoparticles, with a significant gain in CPU time. It is
now possible to explore the parameter space to see the
precise conditions which lead to like-charge attraction,
Fig. 3(b). The attraction is a consequence of the non-
uniform surface charge induced on the metal cores of the
nanoparticles. However, since the total force contains
both electrostatic and entropic contributions, there is no
simple criterion that one can use to determine the specific
conditions for which like-charge attraction will manifest
itself. In Fig. 3(b), we use the modified Derjaguin ap-
proximation to calculate the force between large nanopar-
ticles of radii a = 200 Å, in dilute electrolyte solution
— conditions for which a direct integration of the non-
linear PB equation is very time consuming. Once again
for sufficiently different values of Q1 and Q2, like-charge
attraction manifests itself. Furthermore, we observe that
for low salt concentrations, attraction can extend to very
large distances.
The modified Derjaguin approach introduced in this

Letter can also be used to study adsorption of metal
nanoparticles with charge Q to a charged phopholipid
membrane with surface charge density σ, see Fig. 4.
Within the Derjaguin approximation the electric field
just outside the membrane is directly determined by the
Gauss law, E(0) = 4πσ/ǫ, which allows us to easily inte-
grate the 1d PB equation using 4th order Runge-Kutta.
The potential on the metal slabs is once again determined
using the charge conservation condition,

∫ L+2a

L

[

σa(l) + σb − 2σn

]

dl = 0 , (9)

where 2σn is the renormalized total surface charge on
the metal slab, calculated using Eq. 5. The electrostatic-
entropic force between the membrane and the nanoparti-
cle can be calculated using Eq. 6, replacing the prefactor

FIG. 4. (a) A metal nanoparticle of charge Q and radius a,
at surface-to-surface distance L from a charged planar mem-
brane, inside an electrolyte solution. (b) Representation of
the modified Derjaguin approximation for this system.

πa by 2πa, valid for the interaction of a sphere with a pla-
nar surface50. The interaction potential can be obtained
by integrating the force as a function of separation. To
quantitatively study the adsorption of metal nanoparti-
cles to the membrane one must also take into account the
dispersion interaction52

Uv = − A

12

[

2a

L
+

1

(1 + L/2a)
+ 2 log (

L/2a

1 + L/2a
)

]

,

(10)
where A ≈ 8.9 kBT is the Hamaker constant character-
istic of decane-gold in water at room temperature53.
We now explore the interaction between gold nanopar-

ticles of radius a = 200 Å and negative charge Q, with
a like-charged phospholipid membrane of surface charge
density σ = −0.26 C/m2, in a dilute electrolyte solution
of 2 mM. We see that strongly charged nanoparticles are
repelled from the surface. However when the modulus of

FIG. 5. Interaction potentials between a spherical metal
nanoparticle of radius a = 200 Å and charge Q, indi-
cated in the figure, and a membrane of charge density σ =
−0.26 C/m2. The electrolyte concentration is 2 mM. Solid
curves are the electrostatic-entropic potentials for different
nanoparticle charges, while the dashed curves are the total
interaction potentials, which also include the van der Waals
dispersion interaction. The membrane was modeled as a de-
cane, with Hamaker constant A ≈ 8.9 kBT .
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Q is not too large the interaction becomes attractive at
sufficiently short separations, see Fig. 5. As the modulus
of the charge decreases, the range of like-charge attrac-
tion increases. Fig. 5 also shows that for these low salt
concentrations, the total particle-membrane interaction
potential is dominated by the electrostatic-entropic con-
tribution, with the dispersion potential being negligible.
If salt concentration is increased, the electrostatic contri-
bution will become screened and the total potential will
be dominated by the dispersion interaction. Knowledge
of the interaction potential between the metal nanopar-
ticles and a phopholipid membrane allows us to easily
calculate the adsorption isotherms. This will be explored
in the future work.
In this Letter we have explored like-charge attraction

between spherical metal nanoparticles inside a monova-
lent electrolyte solution. Existence of such attraction is
particularly surprising considering that two like-charged
parallel metal slabs always repel one another, demon-
strating the importance of curvature for this counterin-
tuitive result. We have used two methods to explore in-
teraction between nanoparticles – a direct numerical in-
tegration of the full non-linear PB equation in cylindrical
coordinates, and a newly introduced modified Derjaguin
approximation. Both approaches provide identical re-
sults, but the modified Derjaguin approximation leads to
orders of magnitude gain in CPU time. We have also
used the modified Derjaguin approximation to study the
adsorption of charged metal nanoparticles to biological
membranes. The new theory provides an efficient way
to calculate the adsorption isotherms important in var-
ious medical applications. It can also be used to study
stability of dispersions and to explore heterogeneous co-
agulation of suspensions of metal nanoparticles.
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