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The recoverable strain is shown to correlate to the temporal evolution of microstructure via
time-resolved small-angle neutron scattering (SANS) and dynamic shear rheology. Investigating
two distinct polymeric materials of wormlike micelles and fibrin network, we demonstrate that, in
addition to the nonlinear structure-property relationships, the shear and normal stress evolution is
dictated by the recoverable strain. A distinct sequence of physical processes under large amplitude
oscillatory shear (LAOS) is identified that clearly contains information regarding both the steady-
state flow curve and the linear-regime frequency sweep, contrary to most interpretations that LAOS
responses are either distinct from, or somehow intermediate between the two cases. This work
provides a physically-motivated and straightforward path to further explore the structure-property
relationships of viscoelastic materials under dynamic flow conditions.

A long-standing challenge in understanding the out-of-
equilibrium behavior of soft matter is to link microstruc-
tural rearrangements and the macroscopic flow proper-
ties. We show, via time-resolved rheo-small-angle neu-
tron scattering (rheo-SANS), that such a link can be
made, forming nonlinear rheological structure-property
relations, by considering the evolution of the recoverable
component of the strain.

The simultaneous collection of macroscopic rheologi-
cal information and particle- or molecular-level data has
been used understand the interplay between material
constituents that cover a wide range of length scales. Re-
cent examples include the applications of scattering tech-
niques in polymeric materials [1–7], confocal microscopy
in colloidal systems [8–18] and simulation methods [19–
24]. Despite these efforts, rheological structure-property
relations remain incompletely understood. Oscillatory
shearing provides a reproducible way to probe viscoelas-
tic behaviors and has been used to study a wide array of
soft materials [25–31]. Many processing conditions and
practical applications of soft materials can be approxi-
mated by large amplitude oscillatory shear (LAOS) be-
cause it offers independent control of the length and time
scales of structural rearrangements. As such, LAOS has
been widely adopted as a model transient flow protocol
capable of eliciting nonlinear responses [2, 19, 24, 32–40].

Typical mathematically-based descriptions of experi-
mental responses to LAOS are based on Fourier trans-
formation (FT), which represents the complex sequence
of processes exhibited by soft materials in the time do-
main as a sum of harmonic contributions in the frequency
domain [41], performing an averaging of sorts. Physical
processes that take place sequentially over intervals of
time shorter than a period of oscillation are therefore
not easily discerned via such analysis methods. The lack
of a generic understanding of the higher harmonics [42]
has limited the widespread adoption of these methods in
time-resolved molecular-level studies [2, 5, 6, 34, 43, 44].

In this letter, we show that the recoverable strain, an
often overlooked rheological metric that was first pro-
posed by Weissenberg [45] and Reiner [46], provides an
ideal basis for understanding the complex evolution of the
microstructure and the shear and normal stresses of an
industrially-relevant entangled solution of wormlike mi-
celles (WLMs) and a biopolymer network of fibrin (see
Supplemental Material for material preparation). In dis-
cussing the experimental reality of recovery tests, Lodge
noted that typical experiments are constrained in one
dimension. Constrained recovery was incorporated into
his transient network theory of polymers, which makes
a prediction about the relationship between recoverable
strain and the first normal stress difference [47]. Several
studies [47–53] have adopted this concept to study poly-
meric and nanocomposite systems, mostly under steady
shear or creep flow. The central variable in these stud-
ies [45–51] is the amount of deformation recovered after
the removal of shear stress. Reiner [46] elevated the im-
portance of the recoverable deformation, calling it the
strain, a definition that has not stuck. Despite signifi-
cant early efforts, measurements of constrained recovery
remain limited, and have not, until now, been applied to
the study of structure-property relationships under oscil-
latory shearing.

The two polymeric materials we study have very differ-
ent behaviors, which allows us to more clearly illustrate
the benefits of our new approach. Worm-like micelles un-
dergo many breakage and reformation events on the time
scale of reptation, leading to a Poisson distribution of
length scales at equilibrium, and a single relaxation time
[54]. They have therefore been used to study nonlinear
flow behaviors of entangled linear and branched poly-
mers [1, 55–59]. Fibrin networks are known to possess
flow properties that are distinct from common synthetic
polymers [35, 60–62] because they are primarily elastic
and stiffen when strained, protecting tissue from large
deformations.
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FIG. 1. Lissajous curves in the traditional (σ−γ, σ− γ̇) and proposed (σ−γrec, σ− γ̇un) frames at De = 0.0625 (a, b, e, f) and
De = 0.25 (c, d, g, h) from WLMs. The lines in the proposed elastic and viscous views have slopes equal to the plateau modulus
G0 = 180Pa and the zero-shear viscosity η0 = 48 Pa·s. The stars and squares correspond to zero and maximum recoverable
strain at the largest amplitude, respectively. Shear viscosity η = σ/γ̇un determined from LAOS on top of the steady-shear flow
curve at De = 0.0625 (i) and De = 0.25 (j).

We use in-situ rheo-SANS to simultaneously monitor
the alignment of micellar segments as well as the recovery
rheology. Measurements are made in the steady alternat-
ing state when all initial transience has decayed. An iter-
ative constrained recovery procedure is employed at 200
distinct evenly-spaced instants along an oscillation (see
Supplemental Material for detailed experimental proto-
col, which includes Ref. [63]). The unrecovered part of
the strain, γun, is the strain the system ultimately recov-
ers to, and the recoverable strain, γrec, is the part of the
total strain that is elastically recovered. All rheo-SANS
measurements are made with an Anton-Paar MCR-501
rheometer with a concentric-cylinder Couette geometry
at the NCNR on beamline NGB-30. Normal stress differ-
ences and additional constrained recovery tests are mea-
sured using a DHR-3 rheometer (TA Instruments) with
a 4-degree cone and plate geometry.

The alignment of micellar segments is measured in the
velocity-gradient (1-2) and velocity-vorticity (1-3) planes
using time-resolved rheo-SANS techniques [44, 64]. A
q-range of 0.006 1/Å to 0.03 1/Å is probed, correspond-
ing to the rod-like scattering of the micelle segments (see
Supplemental Material). SANS data are reduced accord-
ing to NCNR guidelines [65]. A temporal deconvolution
protocol [66] is used to enhance the resolution and accu-
racy of the measurements.

Oscillatory shearing from WLMs with amplitudes
ranging from the linear (SAOS) to the nonlinear (LAOS)
regimes are performed at Deborah numbers (De = ωλ,
where ω is the angular frequency and λ is the longest re-

laxation time) of 0.0625 (ω =0.25rad/s) and 0.25 (ω =1
rad/s), where the inertial effects of the stress-controlled
procedure are negligible. The traditional elastic and vis-
cous Lissajous curves of the WLMs are displayed in Fig. 1
(a and e) and (c and g). The distorted elastic Lissajous
curve and the secondary loops of the viscous Lissajous
curve indicate that the system undergoes a complex se-
quence of processes over the course of an oscillation. FT-
based analysis schemes quantify the departure from lin-
earity in an average sense, taking the response from an
entire period of oscillation as the object to be analyzed.
The resulting harmonics therefore have no clear physi-
cal relation to the structure at any particular instant.
We contrast this with the underlying principle of time-
resolved rheo-scattering techniques [44, 66], which is that
the structure and rheology at any one instant are causally
related. A framework that correlates the rheology with
real-time structural evolution is needed.

Strain can be decomposed into recoverable and unre-
coverable components [45, 46]. Recoverable strain is elas-
tic, while viscous properties are dictated by the rate at
which strain is acquired unrecoverably. Elastic and vis-
cous Lissajous curves that reflect this view are therefore
presentations of stress vs. recoverable strain (σ − γrec)
and stress vs. unrecoverable strain rate (σ − γ̇un). The
slopes of the σ−γrec and σ−γ̇un curves for Hookean solids
and Newtonian fluids retain their clear meaning of being
the modulus and viscosity, respectively. Plots of stress
vs. recoverable strain for a Newtonian fluid will have
undefined slopes because purely viscous fluids acquire
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no strain recoverably. Our proposal therefore removes
the current possibility of defining a modulus for a purely
Newtonian fluid or a viscosity for a purely Hookean solid.

The proposed elastic Lissajous curves, σ − γrec, from
WLMs under LAOS are shown in Fig. 1(b and d). The
new presentations show significant differences from the
traditional plots that use the total strain. At the in-
stants close to the total strain extremes (stars in Fig. 1
a and c), the recoverable strain is nearly zero, indicating
that the material is closest to its equilibrium configura-
tion and is therefore undeformed. Similar behavior has
been observed in polymeric and colloidal systems [67–71],
where a constant linear-regime elasticity exists near the
strain extrema under LAOS. At both investigated fre-
quencies, the σ− γrec curves show straight lines of equal
slope at | γrec |<∼0.5, which indicates an elastic modulus
of 180 Pa. This value corresponds to the plateau modu-
lus (indicated by lines in Fig. 1 b and d), G0 = 180 Pa,
which is typically determined at much higher frequen-
cies (De >> 1), indicating that the elastic modulus of
the transient micellar network is constant across a wider
range of lower frequencies than previously thought [Fig.
S2(a)]. We contrast these observations with the storage
modulus, which is frequently taken as a measure of elas-
tic modulus, which has values of G′(De = 0.0625)= 0.62
Pa and G′(De = 0.25)= 10.3 Pa [Fig. S7].

The new viscous Lissajous curves from WLMs under
LAOS, σ − γ̇un, are shown in Fig. 1 (f and h). Similar
to the σ−γrec curves, straight lines with constant slopes
are obtained in the small and intermediate amplitudes.
This slope is independent of frequency and equal to the
zero-shear viscosity, η0, determined from steady shearing
(straight lines in Fig. 1). The viscosities determined dur-
ing LAOS and steady shearing are favorably compared
in Fig. 1 (i and j). Over the course of an oscillation at
De = 0.0625, the two protocols yield similar data. Even
at the higher frequency (De = 0.25), the viscosity deter-
mined from the LVE and thinning portions in LAOS is
consistent with the flow viscosity on the upward sweep.

The determination of a constant elastic modulus and
a constant viscosity in the linear regime across a broad
range of frequencies requires reconciliation with the fre-
quency dependence of the dynamic moduli, G′ and G′′.
The storage and loss moduli are known to represent the
average amount of energy stored and dissipated per unit
volume over a cycle of oscillation [72], while the elas-
tic modulus presented here is the modulus in a force-
extension perspective. Having determined the elastic
modulus and the viscosity, and the amount of deforma-
tion that is recoverable and unrecoverable at each in-
stant, the instantaneous energy storage and dissipation
rate can be quantified at any time: Ws(t) = 1

2G(t)γ2rec(t)

and Ẇd(t) = η(t)γ̇2un(t). Averaging the instantaneous
energy storage and dissipation over an oscillation re-
sults in metrics that are related to the dynamic moduli:
Ws,avg = (γ20/4)G′ and Ẇd,avg = (γ20/2)ωG′′. We show

that following an energetic analysis, one can transform
from the elastic modulus and viscosity to the energetic
parameters, G′ and G′′ (Figs. S7 and S8). The linear-
regime dynamic moduli can therefore be obtained within
a LAOS response if one focuses exclusively on the re-
sponse to small recoverable strains (Fig. S7). We sug-
gest on this basis that LAOS tests, rather than being
treated as being fundamentally different from other tests
[73–75], sequentially present information regarding the
linear-regime relaxation spectrum and the steady-state
flow curve, and how the material transitions between the
two states.
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FIG. 2. Shear (a) and normal stress (b) are plotted against
the recoverable strain from the fibrin. Normal stress from
WLMs with respect to the strain γ and the recoverable strain
γrec at De = 0.0625 (c, d) and De = 0.25 (e, f).

At instants when the total strain is large (stars in
Fig. 1), the recoverable strain and the unrecoverable
strain rate are minimal, and the WLMs exhibit linear vis-
coelasticity characterized by G0 and η0. Measuring the
evolution of the recoverable and unrecoverable strains es-
tablishes a clear sequence of processes during a period of
oscillation: LVE behavior followed by softening/thinning
and recoil, taking place twice per oscillation.

Unlike the significant differences between the total and
recoverable strains in WLMs, the fibrin network shows
nearly complete strain recovery (Fig. S3). The oscilla-
tory shearing response of fibrin at an imposed frequency
of 1 rad/s is presented in Fig. 2 (a). Across all deforma-
tion amplitudes, when | γrec |<∼0.05, we observe straight
lines with the same slope, indicating a single modulus
that is approximately equal to G′. This equivalence is
because γrec ≈ γ, which is not true for elastic liquids,
such as the WLMs.

With increasing recoverable strain, the fibrin stiffens
[35]. Immediately after the recoverable strain reversal,
the fibrin recoils to its LVE configuration. Our sequenc-
ing of the fibrin responses under oscillatory shearing is in
resonance with other studies that account for the unique
mechanical properties as a sequence of structural hierar-



4

chy with respect to the (recoverable) strain [62, 76, 77].

While many studies have focused exclusively on the
shear stress response to LAOS, normal stress differences
have received little attention [78–80]. A full exposition
of the extra stress tensor necessarily involves both nor-
mal and shear components. Janmey et al. [79] studied
fibrin networks and saw negative normal stresses under
shear. A micromechanical model has been proposed and
used to study normal stress differences of soft glasses [80].
Despite these works, a clear link between normal stress
differences and other components of the extra stress ten-
sor under LAOS remains incompletely understood. In
their study of silicone polymers, Benbow and Howells
concluded that, “the observation of recoverable elastic
strain may be taken as a necessary and sufficient condi-
tion for observable normal stress [49].” Their conclusion,
however, was drawn from steady, uni-directional shear-
ing, and has not been examined under transient shear,
nor linked to any structural measure.

FIG. 3. Correlation between macroscopic rheology and mi-
croscopic structure. (a) Proposed elastic Lissajous figure
(σ − γrec) coupled with 1-3 alignment factor Af denoted by
the color scale. (b) 2-D SANS patterns at zero (i and iii)
and maximum (ii and iv) recoverable strain in both velocity-
gradient and velocity-vorticity planes. Alignment factors in
the 1-3 (c) and 1-2 (d) planes are plotted as functions of the
recoverable strain, showing the same proportionality constant
of 0.045.

The first normal stress difference, N1, from WLMs
is shown in Fig. 2 (c) and (e), where the raw response
was filtered to remove noise (black lines). When plot-
ted against the total strain, typical bow-tie shapes are
observed. The normal stress trajectory also depends
strongly on the imposed amplitude, as the weakly nonlin-
ear response obtained from medium-amplitude (MAOS)
and the fully nonlinear response (LAOS) clearly differ.
When the normal stress differences are plotted in the
recoverable strain domain, N1 − γrec, there is collapse
onto the same parabolic master curve, showing that the
MAOS and LAOS cases undergo similar sequences within
a cycle of oscillation. We therefore observe a quadratic
dependence of the normal stress difference on the recov-
erable strain.

To form a more quantitative understanding of the nor-
mal stress difference, we apply an expression derived
by Lodge, from his transient network theory of poly-
mers [47]. Lodge showed that the ratio of the first
normal stress difference to the shear stress under con-
strained recovery is N1/σ = 2γrec. We exploit this re-
lationship to provide a description of the first normal
stress difference with respect to the recoverable strain,
N1(t) = 2G(t)γ2rec(t), where G(t) is the recoverable
strain-dependent elastic modulus determined from the
σ − γrec plots. The calculated N1 values are shown
in Fig. 2 (d and f) in comparison with the experi-
mental WLM results at the two frequencies. In both
cases there is exceptional agreement. Additionally, we
show the theoretical prediction from the linear regime,
N1(t) = 2GLVEγ

2
rec(t) as dashed lines, and note the de-

parture from LVE behavior at γrec ≈0.5, in agreement
with the shear stress rheology.

The fibrin normal stress is shown in Fig. 2(b) as a
function of the recoverable strain. The negative normal
stress indicates that the fibrin contracts under shear-
ing [79]. Despite having fundamentally distinct struc-
ture and properties from WLMs, the magnitude of the
normal stress still increases quadratically with the re-
coverable strain. While it is known that biopolymers
do not follow classical rubbery elasticity [60], we empiri-
cally observe that the normal stress is well described by
N1(t) = −2mG(t)γ2rec(t), where m is found to be 5. Hav-
ing m >1 agrees with the finding that these biopolymers
tend to show larger normal stresses than synthetic poly-
mers [77, 79]. With the results from the two distinct
systems, we conclude that the recoverable strain dictates
not only the shear stress, but also the complex normal
stress.

The experimentally-determined physical processes ob-
served in the macroscopic rheological responses are mir-
rored in the microstructural evolution of the WLMs as
shown in Fig. 3 for the De = 0.25 case for a total
strain amplitude of γ0 = 4. Shown in Fig. 3 (a) is the
σ − γrec figure, with a color scale that reflects the de-
gree of alignment observed in the 2-D SANS patterns
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shown in Fig. 3 (b). We quantify the alignment of the
micellar segments by defining an alignment factor (Af) as

Af =
∫ 2π

0
Ic(q

∗, φ)cos(2(φ − φ0))dφ/
∫ 2π

0
Ic(q

∗)dφ, where
Ic(q

∗, φ) is the azimuthal intensity over q∗ and φ is the
azimuthal angle with the segmental q-range q∗ = 0.006
to 0.03 1/Å. φ0 represents an orientation angle. The
alignment factors in the 1-2 and 1-3 planes are presented
as functions of the recoverable strain in Fig. 3 (c) and
(d).

Contrary to the established view that shear-induced
alignment correlates with shear rate at low frequency and
strain at high frequency [6], we observe that the align-
ment of micellar segments is linearly proportional to the
magnitude of the recoverable strain regardless of the im-
posed frequency. Further, the same proportionality co-
efficient is determined in both the 1-2 and 1-3 planes:
Af = 0.045 | γrec |. We therefore build a remarkably
consistent physical picture: when the recoverable strain
is small, linear viscoelastic responses are elicited, even
under LAOS, and the scattering patterns are identical to
equilibrium conditions with no alignment of the micel-
lar segments. As the magnitude of the recoverable strain
increases, so too do the alignment factor and shear and
normal stresses. Even when the modulus begins to drop
at large | γrec | (points ii and iv in Fig. 3 (a)), the align-
ment is still linearly dependent on | γrec |.

Biopolymers such as fibrin are known to align and
stretch with strain [81], exhibiting unique force-extension
relationships [61, 79]. We have shown that almost all
strain is acquired recoverably by fibrin networks. Our
results from both the shear-thinning linear entangled mi-
celles and the strain-stiffening fibrin networks therefore
show that it is the recoverable strain that provides the
basis of accurate nonlinear structure-property relations
of soft polymeric materials.
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ship between the National Institute of Standards and
Technology and the National Science Foundation under
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tion under Grant No. 1727605. We gratefully acknowl-
edge helpful discussions with Michelle Calabrese for the
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the fibrin. Certain commercial instruments or materi-
als are identified in this paper to foster understanding.
Such identification does not imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equip-
ment identified are necessarily the best available for the
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