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Soft topological surface phonons in idealized ball-and-spring lattices with coordination number
z = 2d in d dimensions become finite-frequency surface phonons in physically realizable super-
isostatic lattices with z > 2d. We study these finite-frequency modes in model lattices with added
next-nearest-neighbor springs or bending forces at nodes with an eye to signatures of the topological
surface modes that are retained in the physical lattices. Our results apply to metamaterial lattices,
prepared with modern printing techniques, that closely approach isostaticity.

Recent work [1–3] laid the foundation for a theory,
akin to the topological band theory of electronic mate-
rials such as quantum Hall systems [4, 5] and topolog-
ical insulators [6–12], of topological mechanics of peri-
odic ball-and-spring isostatic lattices with average coor-
dination number z, under periodic boundary conditions,
equal to twice the spatial dimension, 2d. This theory pre-
dicts the existence of zero-energy surface-modes at every
surface wavenumber with the number of these modes on
different surfaces depending on the topological properties
of the bulk phonon spectrum. It has been applied to a
variety of systems and phenomena [13–23] from random
and jammed systems to stress concentration at topolog-
ical domain walls. Our focus here is on periodic fully
gapped systems in which the only bulk zero modes are
those imposed by translational invariance at wavenum-
ber q = 0. Naturally occurring crystals always have an
effective coordination number greater than 2d (because
forces between sites have a range greater than the inter-
site separation) or stabilizing bending forces favoring par-
ticular angles between bonds incident on a given site, and
they are not candidates to exhibit topological mechanics.
On the other hand, with the aid of modern printing and
cutting techniques, metamaterials with z = 2d consist-
ing of vertices connected by thin nearest-neighbor (NN)
elastic beams can be designed [18, 21] and constructed
[24, 25] to minimize bending forces and, thereby, closely
approach the isostatic limit to which the topological the-
ory of Refs. [1–3] applies.

Here we study generalized kagome lattices (GKLs)
to which weak next-nearest-neighbor (NNN) springs or
bending forces [26] are added [Fig. 1], and we focus on
how their surface modes evolve as the magnitudes v of
these forces are increased from zero. In the presence
of either such force, the originally isostatic lattices be-
come stable elastic materials whose long-wavelength exci-
tations are described by continuum elasticity, which pre-
dicts identical Rayleigh waves [27] on opposite surfaces
of a strip [see supplementary information (SI)]. It would
be natural to expect that these Rayleigh waves evolve
from zero-energy surface modes of the isostatic lattice,
and this is indeed the case for non-topological lattices,
which have the same number of zero modes on all pairs
of opposite parallel surfaces [1]. But this cannot be the

case for topological lattices, which have opposite parallel
surfaces with different numbers of zero modes –at the ex-
treme no zero modes on one and an associated excess of
zero modes on the opposite surface. In what follows, we
discuss Rayleigh waves in weakly super-isostatic lattices
in the context of topological phonons, and we detail how
the dilemma posed by the topological lattices is resolved.

For the sake of generality, we consider generic non-
topological (Xnt) and topological (Xt) GKLs that have
the lowest possible plane crystallographic symmetry, p1.
To study surface modes, we assume that a free surface
parallel to the x-axis exists as indicated in Fig. 1 so that
the network as a whole is semi-infinite with a parallel op-
posite surface located at infinite distance. For the stan-
dard GKL with v = 0, liberating these two surfaces from
the constraints of periodic boundary conditions amounts
to removing 2 bonds or 4 bonds and one site per surface
unit cell. Both choices lead to two zero-surface-modes
per surface wavenumber q distributed on the combined
lower and upper surfaces, but the latter, which we con-
sider, has smoother upper and lower surfaces as shown
in Fig. 1. The topological polarization RT [1] calcu-
lated from the bulk phonon spectrum is zero for Xnt,
and it is non-zero and pointing towards the bottom sur-
face, RT = − 1

2 (1,
√

3), for Xt. As a consequence, there
is one zero-surface-mode per q on either surface for Xnt

and two (zero) zero-surface-modes per q on the bottom
(top) surface for Xt.

Turning to v > 0, we will first review our results and
then present some details about how we obtained them.
Because of space constraints and for concreteness, we
center our discussion on the case with NNN forces. Fur-
ther details, model elastic energies etc., and results for
the case with bending forces are provided in the SI. Fig-
ure 2 summarizes our major results about changes in the
phonon band structure as the strength of the NNN cou-
pling increases from zero and, in particular, how long-
wavelength Rayleigh waves with the same speed develop
on opposite surfaces and how the zero-energy surface
states at v = 0 evolve with increasing v. At v = 0.1,
both Xnt and Xt have one acoustic surface mode on each
surface at each wavenumber q in the surface Brillouin
zone (SBZ). At small q, the modes reduce to the elastic
Rayleigh waves with dispersion ωR(q) = cRq on opposite



2

1 2

3

1

23

4

5 6

1

23

4

56
(a)

1 2

3

11

4

4

1 27 5

3

6 9

8 41011

12

1

23

4

5 6
(b)

(c) (d)

RT

FIG. 1. (a) Unit cell of the KL with NN bonds (black) and additional NNN bonds (blue). (b) Unit cell of the KL with bending
energies (blue arcs). (c) The Xnt and (d) the Xt conformation. The thick black bonds mark our bottom surface, and the thick
dashed line marks a possible cut to liberate a top surface. The green arrow indicates the topological polarization RT of Xt.

surfaces with the same surface cR, predicted by elastic
theory. The situation at v = 0.001 is very similar to that
at v = 0.1 for Xnt except that the acoustic surface-mode
frequency ωs(q) is smaller at every q, indicating an ap-
proach to a single zero mode at each q on each surface as
v → 0. Figure 2 (g) shows that cR ∝

√
v as follows from

the observation that ω2
s(q) must be linearly proportional

to some combination of spring constants and be equal to
zero at v = 0. The situation for Xt is more complex.
The bottom surface has an acoustic mode that stretches
across the SBZ and reduces to the expected Rayleigh
wave at small q and, in addition, a low-frequency optical
mode whose frequency, ωopt is proportional to

√
v across

the SBZ and that vanishes into the continuum at a criti-
cal wavenumber q0. The top surface, on the other hand,
below the lowest bulk band only has a Rayleigh wave with
the same velocity as that of the bottom surface, that dis-
appears into the bulk continuum at a wavenumber that
vanishes as v → 0. The two zero-frequency modes of the
topological v = 0 lattice on the bottom surface are then
the limits of the acoustic mode and the low-frequency
optical mode. At v = 0, the bottom of the band of bulk
states, ωband, is proportional to q2 rather than q as can
be calculated from the envelope of the bulk dispersion,
which has the form ω2

bulk = (q2y − βq2) + O(q4) [1, 2] at

small q. Thus equating ωopt to ωband yields q0 ∝ v1/4 in
agreement with our numerical calculations.

The finite v frequency dispersions of surface states in
both the Xnt and Xt lattices (both with p1 symmetry)
depicted in Fig. 2 are in general different on the top and
bottom surfaces, as one would expect because opposite
surfaces in lattices with such low symmetry are not equiv-
alent. However, consistent with elastic theory, the small q
Rayleigh waves on both surfaces are the same and do not
reflect p1 symmetry. All of the higher frequency modes
do however. The high-q frequencies of the acoustic modes
of both lattices are different on the two surfaces as are
all the higher-frequency optical surface modes [see SI].

The approach of the finite-frequency phonons to the
topological phonons is also reflected in their inverse pen-
etration depths κ shown in Figs. 2 (e) and (f). For both
Xnt and Xt, κ is the same for v > 0 at sufficiently small
q on the bottom and top surfaces as predicted by elas-
tic theory, but differences between the bottom and top

surfaces arise as q becomes larger. As observed in the
dispersion curves, the v → 0 limit unfolds differently in
the two lattices. For Xnt, the Re(κ(q)) curves of the two
surfaces approach one another as v vanishes and eventu-
ally become identical across the entire SBZ. For Xt, the
Re(κ(q)) curves of the top surface terminate at values
of q that decrease with v whereas the Re(κ(q)) curves
of the acoustic and the lowest optical mode on the bot-
tom surface approach each other to produce a two-fold
degenerate zero-frequency mode at v = 0. Note that the
penetration depth of the most dominant contribution to
this mode diverges for q → 0. The inset to Fig. 2 em-
phasizes the extremely small (but which we have verified
is nonetheless positive) value of Re(κ(q)) throughout the
region that the surface acoustic mode exists on the top
surface indicating a very large penetration depth.

Our results for the GKL with bending forces are very
similar [see SI]. The only notable difference is that the in-
teraction strength v is effectively larger than in the NNN
model due to factors mandated by the rotational invari-
ance of the bending energies. Apart from that, the ap-
proach of the finite-frequency phonons to the topological
phonons is qualitatively the same.

We now outline how these results were obtained. The
GKLs are derived from the standard kagome lattice (KL)
by displacing [1] the 3 KL unit cell sites r1 = (0, 0),
r2 = (1/2, 0), and r3 = (1/4,

√
3/4) by

δr1(X) = χ1

√
3 e1 − χ2a3 , (1a)

δr2(X) = χ2

√
3 e2 − χ3a1 , (1b)

δr3(X) = χ3

√
3 e3 − χ1a2 , (1c)

where X ≡ (χ1, χ2, χ3) [28]. ab are the normalized NN
bond vectors of the KL: a1 = (1, 0), a2 = 1/2 (−1,

√
3),

a3 = 1/2 (−1,−
√

3). eb are unit vectors perpendicu-
lar to the ab: e1 = (0,−1), e2 = 1/2 (

√
3, 1), e3 =

1/2 (−
√

3, 1). The displacements are designed [1, 2] so
that making one of the χb’s nonzero causes filaments
(i.e., sample traversing straight lines of bonds) parallel
to ab to zigzag while keeping the remaining filaments
straight. The crystallographic symmetry of the result-
ing GKL depends on X. For example, the twisted KL
with X = (χ, χ, χ) (where χ is some reasonable positive
or negative number) has p31m symmetry [see SI]. For
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FIG. 2. Low-frequency mode structure for (a) Xnt, v = 0.1; (b) Xnt, v = 0.001; (c) Xt, v = 0.1; (d) Xt, v = 0.001. The gray
areas are the projected bulk bands, and the black curves within these bands are bulk mode frequencies as a function of q = qx
for different values of qy, qy = 0, π/10, π/5, . . .. Note the strongly non-monotonic behavior of these modes for Xt at v = 0.001,
a consequence of the lobes in density plots of the lowest mode at v = 0 with ω ∼ (q2y−βq2x) with β > 0 determined by Xt [1, 2].
The color codes for curves in (a)-(d) are red - bottom surface, blue - top surface, orange - longitudinal and transverse bulk
sound modes at qy = 0, and green - Rayleigh waves predicted by elasticity theory. Each surface mode is a linear combination
of four modes that decay with y. The two smallest κ (largest penetration depths) are plotted in (e) [(f)] for each surface mode
shown in (a) and (b) [(c) and (d)]. The color codes for these curves are red (blue) for bottom (top) surface modes at v = 0.1,
purple for bottom and top acoustic modes and for the optical mode at v = 0.001, and dashed green for elastic theory results.
Each of the purple curves in (e) consists of a nearly degenerate pair. The gray ellipsis in (f) highlights a hard-to-see onset
of the acoustic mode after which the upper purple curve consists of a nearly degenerate pair. (g) cR (gray) for Xnt and cR
(black), ∆ω (magenta), and q0 (brown) for Xt. The lines in the corresponding colors are power-law fits with cR ∼ ∆ω ∼ v0.5

and q0 ∼ v0.25, in agreement with our crude estimates. Note that the surface modes for v = 0.001 remain small and nearly flat
throughout the SBZ implying low-energy point-like surface invaginations such as observed in Ref. [24].

X = (0, χ, χ) and X = (−χ, χ, χ), the symmetry is re-
duced to cm and pm, respectively. Our generic GKLs
have deformation parameters X = Xnt = (0.1, 0.15, 0.2)
and X = Xt = (0.1, 0.15,−0.2). We have chosen these
parameters so that the resulting GKLs have the lowest
possible (p1) symmetry, and moderate distortions rela-
tive to the KL. Otherwise, these choices are arbitrary,
and manifolds of alternative choices lead to qualitatively
the same results.

The vibrational modes of an elastic network are gov-
erned by its dynamical matrix D. In the bulk GKL, the
equation of motion is simply ω2 u(q) = D(q)u(q), where
u = (u1x, u1y, u2x, u2y, u3x, u3y) is the displacement vec-
tor of the basis sites, q is the wave vector, and ω is the
angular frequency. D = QSC is the 6 × 6 lattice dy-
namical matrix (for unit mass at sites), with Q the equi-

librium matrix, C = Q† the compatibility matrix, and
S = Diag(1, 1, 1, v, v, v) the spring constant matrix (see
Ref. [2] for background information). In the elastic (con-
tinuum) limit, u turns into a 2-component displacement
field and D turns into a 2×2 effective dynamical matrix.
Details about the dynamical matrices in the two theories
are given in the SI.

To get a comprehensive picture, we use both lattice and
elastic theory. In our elastic theory, we adapt the stan-
dard textbook calculation [27] of the decay lengths and
sound velocities of acoustic surface phonons in isotropic
continua to our anisotropic GLKs [see SI]. This approach
applies only to the longest wavelength acoustic phonons.
Our lattice-based calculations are a generalization to dis-
crete lattices of the standard Rayleigh-wave continuum
calculations [27]. Like the latter calculations, they are
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done on semi-infinite systems that clearly separate top
and bottom surfaces, yet they allow access to wave vec-
tors ranging across the entire SBZ. To carry out our cal-
culations, we break the lattice into one-cell-thick layers
L, with L = 0 the surface layer, L = 1 the next layer into
the bulk, and so on, stacked in the y-direction and with
periodic boundary conditions along x. The equilibrium
matrix has non-vanishing components QL,L ≡ Q00 and
QL,L−1 ≡ Q10 connecting sites in layer L to bonds in
layers L and L − 1, respectively; and the compatibility
matrix has non-vanishing components CLL ≡ C00 and
CL,L+1 ≡ C01 connecting bonds in layer L to sites in
layers L and L + 1, respectively. The dynamical matrix
then has components DL,L−1 = D10 = Q10SC00, DLL =
D00 = Q00SC00 + Q10SC01, and DL,L+1 = Q00SC01.
The equation of motion for any layer L > 0 then reads

ω2 uL = D10u
L−1 + D00u

L + D01u
L+1 , (2)

which is solved by uL+1 = Z uL provided that

Det
[
D10Z

−1 + D00 + D01Z − ω2 δ
]

= 0 , (3)

where δ is the unit matrix, and Z determines the the in-
verse decay length κ in the y-direction via Z = exp(−κ)
(with κ in general complex). Solutions Z(v, ω, q) of
Eq. (3) come in pairs with reciprocal magnitude. So-
lutions with |Z(v, ω, q)| = 1 correspond to bulk modes,
whereas solutions with |Z(v, ω, q)| < 1(> 1) decay away
from the bottom (top) surface and correspond to sur-
face modes. The points in ω-q-space where bulk modes
exist, i.e., points for which there is at least one pair of
solutions with magnitude 1, form bands akin to the pro-
jected band structures in electronic systems (see Fig. 2).
Surface modes can exist only within the bulk band gaps
as the solutions of the equations of motion must obey the
conditions imposed by the surface. Sites 1 and 2 of the
surface unit cell lie directly in the free surface (note that
site 3 does not). The force on these surface sites comes
only from NN and NNN bonds 1 to 4 [Fig. 1] in the ze-
roth layer, and as a result for the free boundary condition
we impose, the first four components of the force vector
satisfy f0 = D00u

0 + D01u
1 = ω2u0. For v > 0, there

are a total of eight zeros at any point in ω-q-space. This
implies that, at any point in a band gap, there are four
modes with |Z(v, ω, q)| < 1(> 1) that decay away from
the bottom (top) surface. The boundary conditions can
be satisfied by superimposing these decaying modes,

uL =

4∑
n=1

AnwnZ
L
n e

iqx−iωt , (4)

where the An are mode amplitudes and wn =
wn(v, ω, q, Zn) are polarization vectors. The band gap
points for which the determinant of the 4 × 4 boundary

matrix B, defined by

Bmn =

6∑
k=1

[
D00 + D01Zn − ω2δ

]
mk

wn,k , (5)

vanishes determine the dispersion relation of the surface
modes. To find these points, we use the standard secant-
method for computing zeros with an array of starting
points that sweeps the band gaps.

Modern 3d printing and cutting techniques now pro-
duce bespoke materials, including regular lattices, with
almost arbitrary designs. In particular, these techniques
can produce mechanical lattices, whose geometry is al-
most identical to isostatic mechanical NN topological lat-
tices. To fully understand and control these lattices, it is
important to know how their properties - elastic energy,
bulk- and surface- mode structure, etc. - differ from those
of the ideal NN isostatic lattice. Our formalism treats
semi-infinite systems exactly and can easily be used to
calculate linearized response, for example to a localized
force at a surface.

The main result of the present work is the unravelling
of the apparent dilemma of topological lattices where
topological-phonon theory predicts for the example we
are studying two soft surface modes on one surface (soft,
bottom) and zero on the other (hard, top) whereas elas-
ticity theory mandates that there be one Rayleigh wave
per surface wavenumber on each surface and that the
two waves have equal speeds. Our work shows that the
resolution of the dilemma is as follows: as v → 0, the
domain of existence of the Rayleigh wave on the top sur-
face shrinks to zero. On the bottom surface, there is
a low-energy optical surface mode, whose domain grows
to the full SBZ and which approaches the bottom surface
Rayleigh wave as v → 0. These two together produce the
two surface-zero modes predicted by topological-phonon
theory.

Our results provide guidance for interpreting results
of experiments on metamaterials targeting topological
phonons. Reference [25] reports experiments and finite
element analysis on kagome-like lattices that show an
asymmetric bulk phonon spectrum in a topological lattice
but a symmetric one in a non-topological lattice. They
verify the existence, in the same geometry we study, of
the two low-energy surface modes on the soft surface that
emerge from the two zero modes of the ideal topological
lattice which they interpret as “an interesting departure
from the conventional case of Rayleigh waves”. Curiously
neither the finite element analysis nor the measurements
show any evidence of the acoustic Rayleigh wave on the
hard surface mandated by elasticity theory. It would be
interesting to see additional experiments that specifically
target the evolution of the hard surface Rayleigh wave
with increasing bending rigidity.
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