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We address the effective tight-binding Hamiltonian that describes the insulating Mott state of
twisted graphene bilayers at a magic angle. In that configuration, twisted bilayers form a honey-
comb superlattice of localized states, characterized by the appearance of flat bands with four-fold
degeneracy. After calculating the maximally localized superlattice Wannier wavefunctions, we de-
rive the effective spin model that describes the Mott state. We suggest that the system is an exotic
ferromagnetic Mott insulator, with well defined experimental signatures.

Introduction.— Mott insulators describe materials that
exhibit insulating behavior as a result of strong local in-
teractions [1]. In those systems, strong on site repul-
sion penalizes the kinetic energy for electrons to hop be-
tween sites, rendering the electronic orbitals localized.
The strong degree of localization of the electronic wave-
function favors antiferromagnetic alignment of the spins
due to Pauli principle [2]. Recent experiments [3, 4] in-
dicate that twisted graphene bilayers have a Mott state
with an activation gap of A =~ 0.3 meV that undergoes
a metal-insulator transition in the vicinity of a super-
conducting phase [4, 5]. This system is purely made of
carbon atoms, with additional degrees of freedom inher-
ited from graphene [6]. That has motivated the question
of whether the observed state could be described by a
novel Mott insulator [7] or other exotic correlated states
[8-12]. Unveiling the nature of the insulating state may
be key to explaining some of the remarkable properties
in the metallic phase.

By twisting two graphene sheets at a small angle of
the order of 6 ~ 1.1°, what was dubbed a “magic” angle,
interference due to hopping between the layers leads to a
Moire pattern and to a significant reconstruction of the
mini bands in the Moire Brillouin zone, which become
flat [13, 14]. Those flat bands have four-fold degener-
acy, which is reminiscent of the valley and spin quantum
numbers of the graphene sheets. In general, the confine-
ment of interacting Dirac fermions in flat bands is ex-
pected to create an emergent SU(4) symmetry, as previ-
ously predicted in graphene heterostructures [15-17] and
in graphene Landau levels [18-24]. Here, the Moire pat-
tern forms a superlattice of quasi-localized states with
the size of the unit cell set by the twist angle, as shown
in Fig. 1.

In this Letter, we show that the low energy Hamilto-
nian of the flat bands at quarter filling maps into the fer-
romagnetic spin exchange Hamiltonian on a honeycomb
superlattice,
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where S; is the localized spin on a superlattice site i, 7, =

(77,79, 7%) = (71, 77) is an orbital pseudospin operator
that is reminiscent of the valley quantum numbers, and
Jij > 0 is the exchange coupling. The parameter 7;; =
—1 when 4, j belong to the same sublattice, in which case
the exchange interaction has SU(4) symmetry, and n;; =
1 otherwise, including nearest neighbor (NN) sites. This
Hamiltonian acts in the Hilbert space which is spanned
by four degenerate states per site, |a, o), with o = 4 and
o =1, ] for the two orbital pseudospins and spin quantum
numbers respectively.

The existence of direct exchange ferromagnetism in an
insulating state is uncommon [15] and reflects the very
unusual shape of the Wannier orbitals in this system.
Ferromagnetism has been recently observed in insulating
van der Waals heterostructures of magnetic chromium
trihalide materials, CrXs (X=I, Br, Cl) [25-27], which
have crystalline field anisotropies that produce an or-
dered Ising state. To the best of our knowledge, we are
not aware of any examples of ferromagnetic Mott states
which do not involve orbital ordering via a superexchange
mechanism [28, 29].

After performing calculations of the maximally local-
ized Wannier orbitals of the Moire superstructure, we
establish the parameters of a minimal interacting tight-

Figure 1: a) Moire pattern of twisted graphene bilayers for
a twist angle of 8 = 1.8°. Each layer has two sublattices, A
and B. The pattern indicates regions of AA, AB, and BA
alignment. Four-fold degenerate states are observed around
the AA stacking regions. b) Twisted graphene bilayer rotated
around A sites (AA region). At those points, the bilayer has
D3 symmetry, comprised of a ('3 rotation around the z axis
and a Cj rotation around the y axis (dashed line) in between
two layers. Red and blue dots: top and bottom layer.



binding model that captures the Mott physics near the
magic angle. We show that even though the orbitals are
well localized in the Mott regime at quarter filling, sur-
prisingly the direct exchange interaction between differ-
ent sites is dominant and favors ferromagnetic spin or-
der at zero temperature. While charging effects [30, 31],
which were not taken into account, may change our
conclusions, the scenario of zero temperature ferromag-
netism in twisted graphene bilayers seems in line with the
reduced degeneracy of the Landau levels measured with
Shubnikov de Haas experiments near quarter filling [3].
We discuss the experimental signatures of this state.

Bloch Hamiltonian.— The free Hamiltonian for twisted
graphene bilayers can be constructed at the lattice level
using a parametrization for the hopping amplitudes be-
tween sites in the two different sheets,

(1)
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where H, is the graphene Hamiltonian and H is the
interlayer hopping between the two sheets in real space.
The Moire pattern can be used to construct Bloch states
that are periodic in the superlattice vectors T;. For
commensurate structures, the Moire lattice vectors are
parametrized by two integers m and r, and correspond
to the twist angle cos® = 1 —72/2(3m? + 3mr +r?), or
equivalently 6 = r/y/3m for small angles.
In a basis for Bloch states

o = ([Pl o) [Pl o) [Cien o) [0is ) (3)
defined in the two sublattices A and B of each of the
two layers (1,2), the Bloch Hamiltonian of the twisted
system

Hy(r,r') = Z H(r,r' + T;)e™Ti (4)

satisfies Hy(r, ' + T;) = Ha(r,r")e"*Ti. In that basis,
[Hk]ab = takb(rv I'/) - Z eivaj tab (I‘, r’ + Tj)v (5)

J

are the matrix elements of (2), with a, b indexes running
over the four components of basis (3). The hopping am-
plitudes t*°(r,r’) = cos? 0.V, (r — ') + sin? OV, (r — '),
where cos, = d/+/d?>+ (r —r’)? with d the distance
between the planes. V,(r) and V(r) are Slater-Koster
functions [32], which decay exponentially and were pa-
rameterized following previous ab initio works [33, 34].
Diagonalization of the Bloch Hamiltonian results in
a set of four-component Bloch eigenspinors ﬂn)k(r) =
(r|thp i) that satisfy ¥ i (r +T) = ¢, 1(r)e™ T and cor-
respond to the energy spectrum &,,(k). We calculate the
bands for a small twist angle of § = 1.0845° (m = 30,
r = 1) near the experimental magic angle 6, ~ 1.1°.
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Figure 2: a) Moire Brillouin zone of the twisted graphene
system (blue hexagon), containing the K and K’ points at
the corners. b) Flat bands in the Moire Brillouin zone for
0 = 1.0845°, near the magic angle 6y ~ 1.1°. The IV point is
at the center of the Moire Brillouin zone. M’ is the mid point
between K and K’ points.

At that angle, the Bloch Hamiltonian is a Ny x Ng ma-
trix with Ny = 11164 sites inside the Moire unit cell.
The low energy bands (n = 1,...,4), shown in Fig. 2b,
are four-fold degenerate at the K points (excluding the
spin). They have a two-fold degeneracy at the other
two high symmetry points of the Brillouin zone, I and
M’ where they open up a gap between particle and hole
branches. At the IV point, the Bloch states have C3 and
Céy symmetry, which involves at 7 rotation around the
y axis placed half-way between the two layers (shown
in Fig. 1b). We also find numerically that all Bloch
eigenspinors satisfy the time reversal symmetry (TRS)
relation T, 1(r) = A;‘L _1(r), with k measured from the
center of the Moire Brillouin zone at IV. The K and K’
points are hence related by TRS, and must have oppo-
site ™ Berry phases. This fact indicates that the Bloch
states of the twisted structure do not suffer from Wan-
nier obstructions [35], and hence could be reconstructed
through a proper basis of Wannier states.

Wannier orbitals.— From the Bloch states of the four
low energy bands, one can extract the Wannier wave
functions in the Moire unit cell,

R = Ze—“‘ R Wldnsd  (6)

where R is the center of the Wannier orbitals and U, (k)
some 4 x 4 unitary transformation. The four component
Wannier spinors W, (r — R) = (r|Rv) are not unique
since adding a phase to the Bloch state e~ rwnk( ) cor-
responds to a new set of Wannier orbitals. We choose
the set of maximally localized Wannier orbitals in finding
the unitary transformation that minimizes their spread,
Q=>[(r*), — (r)?2], with (X), = (Rv|X|Rv). The
minimization was carried with the Wannier90 package
[36]. The momentum space k mesh points are generated
by the reciprocal supercell lattice vectors with 300 x 300
grid points using periodic boundary conditions, including
all high symmetry points.

Following the symmetry arguments outlined in Ref.
[55], we perform the minimization of the spread enforc-
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Figure 3: Wannier wavefunction in the Moire superlattice.
Amplitude |W4(r — R;)| = [W_-(r — R;)| of the orbitals cen-
tered around (a) j € AB sites, and (b) j € BA sites, showing
three sharp peaks. The orbitals Wa have two-fold degener-
acy per site, and are eigenstates of the C5 rotation operator
with eigenvalues € (o = +), and €* (a = —). ¢) Sketch of the
orbitals in the Moire unit cell (green line). Orange: AB cen-
tered Wannier orbitals. Blue: BA centered ones. The gray
dotted line indicates the honeycomb superlattice formed by
the center of the orbitals. Their unusual three peak structure
indicates strong overlap between superlattice sites, favoring
ferromagnetic ordering at zero temperature.

ing the C3 and (3, symmetry for the Bloch states around
the I points. Those two symmetries describe a D3 point
symmetry group, which is a local symmetry of the lat-
tice at AA site regions when the two graphene layers
are rotated around a site [38], as depicted in Fig. 1b.
In agreement with earlier results [39, 55], the Wannier
functions that satisfy those symmetries have three sharp
peaks centered around either the AB or BA sites, form-
ing a honeycomb superlattice with two-fold degenerate
orbitals per site, as shown in Fig. 3.

On a given Moire unit cell, we label the Wan-
nier orbitals by the four-component spinors W, =
(Wy1, Wy 2, Wy 3,w,4)T. Among the four orbitals, Wl,(r—
R;), two are centered at R; € AB sites and are eigen-
states of the C3 rotation operator, with eigenvalues
e = e®™/3 and €*. The other two are centered at
R; € BA sites and also have the same eigenvalues ¢
and €*. From now on, we will label the Wannier or-
bital spinors based on their C3 rotation eigenvalues,
C3Wa(r — R;) = e®2™/3TW,(r — R;), with o = 4 and
R; € AB or BA. The two degenerate orbitals cen-
tered at a given superlattlce site R; are related by TRS,
TWa(r —R;) = W_o(r — R;). Orbitals in NN super-
lattlce sites R; and R; are related by the C} rotation,
CiWa(r — Ry) =W_ o(r—R;).

Tight binding Hamiltonian.— The effective lattice
model of this problem can be constructed by rewriting
the Bloch Hamiltonian (4) into a kinetic energy term of
the form

H = tas(Raj)dl, o (Ri)ds o (Ry), (7)

where R,; indexes the sites of the honeycomb superlattice,
R;; = R, — R; and the d,(R) annihilates an electron

with orbital of type a and spin o at a given superlat-
tice site. The hopping matrix elements between super-
lattice sites can be extracted from the matrix elements of
Hamiltonian (2) in a basis of maximally localized Wan-
nier functions,

tap(Ri) =

Due to the translational invariance of the superlat-
tice, tap(R) = (0,a|/H|R,B). For NN sites, we find
that |taq|(1) &~ 0.384 meV whereas for n-th NN sites
ta,—a(n) = 0. Hence, hopping between sites conserves
the orbital pseudospin quantum number o = +. |t40|(n)
has a non-trivial dependence with the distance between
sites (see table I), in qualitative agreement with the find-
ings of Ref. [55] for a significantly larger twist angle.

The Coulomb interactions between lattice sites can be
written as He = %fdrdr'p(r)ﬁ‘re—fr,‘p(r’), where p(r) is
the electron density and s ~ 5 the dielectric constant of
twisted bilayers encapsulated in boron nitride. We can
rewrite this term in terms of d, , operators by express-
ing the density p(r) = > Ul (r)W,(r) in terms of field
operators W, (r) = > e Walr — Rj)da.,(R;). The re-
sulting Coulomb Hamiltonian has a direct term and also
an exchange part, Ho = Hq + He. The first term,

Ha = Z Vap (Rij)na(Ri)ng(R;), 9)

(Ra|H|R + Ry, B). (8)

with ne(R) = >, df, ,(R)da,o(R) the density operator
and repeated «, indexes to be summed. The Coulomb
coupling is cast as an overlap integral of Wannier orbital

. A 82 ~
spinors, Vag(Rij) = %fdrdr’|Wa(ri)|2m|W5(r;-)|2,
with R;; = R; —R; and r; = r —R;. The exchange part
is
He = Joar,sp(Rij) df,

7]

T
(Rl)dﬂ)a

(10)
The coupling Joarpp (Ryy) = L [dedr'Wi(r;)
W (rj)ﬁlr r/IW/B( ) - Wy (r}) is the exchange integral
between lattice sites. In general, we find that the com-
binations Jaﬁ)ga(Rij) = Q/B,a/g(Rij) = 0 for « # ﬂ,
within the numerical precision. That includes the on site
exchange (Hund’s coupling), which is zero due to the or-
thogonality between same site Wannier spinors [15, 39].
From now on, we define the only non-zero combination
Jaa,ﬁﬁ = Jaﬁ.

The numerical values of the hopping energy, Coulomb
interaction and the exchange interaction for n-th NN, is
shown in table I, which is the second main result of the
paper. We find the on-site Hubbard Uyg = V,5(0) = 21.2
meV, which is much larger than the first NN hopping ¢(1),
and hence the ratio U/¢(1) ~ 55 falls comfortably in the
realm of the Mott regime.

The exchange interaction for first NN sites (n = 1)
is |Jap(1)] & 5 meV. In general, the diagonal terms

’ (Rj)dﬁ’,o’ (Ri)da’,a(Rj)v



n [taal Vagp Jaa Jo,—a
0 0 21.2 0 0
1 0.384 16.9 5.09 —4.93
2 0.005 16.7 1.11 1.02
3 0.447 15.6 0.52 —0.51
4 0.162 12.6 0.25 —0.18
5 0.084 11.58 0.16 0.12
6 0.007 9.68 0.09 0.08

Table I: Electronic hopping amplitude |tq«|, direct Coulomb
interaction Vg and exchange interaction Jag for various near-
est neighbor sites: on-site (0), and n-th nearest neighbors
(n), with n = 1 — 6. Energies in meV calculated for x = 5.
n = 1, 3 and 4 correspond to sites in opposite sublattices.
Jaa & £Ja,—a, with +(—) for sites in the same (opposite)
sublattice.

Jaa(n) > 0 are positive definite, whereas the off diag-
onal ones can be either positive or negative, Jo _o(n) =~
+Jaa(n), with + (=) for 4, j sites in the same (opposite)
sublattice, as shown in table I. For sites in the same sub-
lattice, the fact that Jog(n) = Jaa(n) > 0 is the same
for all four combinations of «, = & indexes hints at an
emergent SU(4) symmetry between spin and orbital de-
grees of freedom at quarter filling. For sites in opposite
sublattices, the exchange interaction has SU(2) symme-
try in the spin. It has also both ferro (Jue > 0) and
antiferromagnetic (Ju,—o < 0) correlations in the orbital
sector, depending on the orientation of the pseudospins.

Since Hund’s coupling is zero, at quarter filling the
lower flat bands are in the unitary limit [40], with each
Moire superlattice site R; being singly occupied and hav-
ing a well defined spin ¢ and orbital quantum num-
ber @ = +. Mapping the exchange term in terms of
spin S; = %dL)U(Ri)Egg/dayg/ (R;) and pseudospin ; =
3di, . (Ri)Gapds,.o(R;) operators, the result is the fer-
romagnetic exchange interaction announced in Eq. (1),
with J;; = Jaa(n) > 0 [41]. This Hamiltonian favors
ferromagnetic alignment of the spins at zero temperature
(T = 0). In the orbital sector different states are possible,
including canted magnetism with ferromagnetic order in
the pseudospin 7% component, accompanied by staggered
(antiferromagnetic) order in the transverse, 7+ direction
[42].

The superexchange interaction follows from second or-
der perturbation theory in the hopping energy [43, 44]
and has the same form as the exchange term in Eq. (1) for
n;; = —1 [15]. The superexchange term has SU(4) sym-
metry and favors antiferromagnetic alignment between
nearest neighbor sites due to Pauli principle. It’s cou-
pling J — —t2/U ~ —0.01 meV is very small compared
to the exchange one, and can be safely igonored.

Ferromagnetic Mott state.— Mott-Hubbard insulators
have strongly localized states and are known to be over-

whelmingly antiferromagnetic due to strong superex-
change interactions (t?/U > J) [45-47]. Ferromagnetism
occurs mostly either in metallic systems or in metallic
bands hybridized with localized moments via the Ander-
son impurity mechanism [45, 46, 48]. Within the Hub-
bard model framework, the only credible mechanism for
spin ferromagnetism exists for multi-orbital systems in
the context of the Kugel-Khomskii model [43, 47], where
superexchange can become effectively ferromagnetic in
the presence of staggered orbital ordering.

We conjecture that the flat bands in twisted graphene
bilayers are in a way intermediate between ferromagnetic
bad metals and antiferromagnetic Mott-Hubbard insula-
tors. Due to the exotic shape of the Wannier orbitals, the
hierarchy between hopping, direct exchange and the lo-
cal Hubbard interaction, ¢t < J < U, leads to an anoma-
lously small superexchange.

In spite of the fact that U/t is large, the strong overlap
between the orbitals found in the non-interacting the-
ory suggests that the system is potentially close to an
insulator-metal transition [1] due to a charge fluctua-
tion mechanism which presently is not well-understood
[30, 31]. Nevertheless, the form of the effective spin
Hamiltonian (1) should not depend on the details of this
mechanism, as long as the system remains quarter filled
and does not undergo a charge-ordering transition (po-
tentially accompanied by dimerization) due to Coulomb
interactions. In carbon lattices, which are notoriously
stiff [49], charge density wave instabilities are hindered
by the high elastic energy cost for the system to deform
the lattice and restore charge neutrality.

Interactions should increase the spread of the max-
imally localized Wannier orbitals, making the system
more metallic [31]. In the absence of charge order, the
dressed Wannier functions should preserve the symme-
tries of the lattice and renormalize the couplings U, J
and the hopping ¢. In that regard, table I provides an
upper bound for the Hubbard U coupling, and a lower
bound for the exchange interaction J and ¢ [50].

Ezxperimental signatures.— Since the honeycomb super-
lattice is not frustrated, it will exhibit ferromagnetic spin
order at 7" = 0 in the universality class of the ferromag-
netic (spin S) Heisenberg model. It is well known that
the magnetization M, correlation length ¢ and the spin
susceptibility x exhibit peculiar features in two dimen-
sions, since for any T' # 0 the system is disordered, with
zero Curie temperature. The model has been extensively
studied both in zero and finite external magnetic field
H on various lattices [51-54]. At finite field H # 0,
M(H) is finite and strongly temperature dependent. In
the regime T'/J < 1, which can take place for T' ~ 2K
(where T'/J = 1/25), a weak magnetic field of H ~ 0.2T
(i.e. H/J =~ 1/250) already provides nearly maximum
magnetization [52, 53]. The spin susceptibility x(H) is
zero for T = 0 and H # 0 and exhibits a characteris-
tic finite-temperature peak at 7' = T, which scales in a



well-defined way with external field.

It has been established experimentally that doping
away from the Mott insulating phase leads to metallic
(and even superconducting) behavior [3, 4]. A profound
new feature has emerged at finite magnetic field, which
persists both in weak (Shubnikov-de Haas oscillations)
and strong field limits (quantum Hall effect), for hole
doping [3, 4]. Those measurements suggest a small Fermi
surface that develops from doping the correlated insulat-
ing phase, accompanied by a possible symmetry break-
ing of yet unknown origin. The resulting state has a
fermionic degeneracy of 2, indicating a reduction of the
original four-fold band degeneracy by a factor of 2.

This behavior is consistent with the system being in
the proximity to a ferromagnetic Mott state, in which
the spins align when nudged by an infinitesimally weak
field. At the same time, any long-range order in the
orbital sector is expected to be much more fragile and
disappear quickly due to charge disorder and motion of
holes in the metallic state. Therefore we conjecture that
in the weak field limit, the ground state emerging from
doping the ferromagnetic insulator would be a ferromag-
netic, spin-polarized, strongly-correlated metal, with the
orbital pseudospin symmetry preserved.
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Note.— After submission of the manuscript we became
aware of Ref. [55], which identified a distinct ferromag-
netic ground state at quarter filling using different meth-
ods. That work does not predict the existence of a spin
ferromagnet, in contrast to ours, resulting in a very dif-
ferent physical picture and experimental signatures [56].
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