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We identify states favored by Coulomb interactions projected onto the Wannier basis of the four
narrow bands of the “magic angle” twisted bilayer graphene. At the filling of two electrons/holes per
moire unit cell, such interactions favor an insulating SU(4) ferromagnet. The kinetic terms select
the ground state in which the two valleys with opposite spins are equally mixed, with vanishing
magnetic moment per particle. We also find extended excited states, the gap to which decreases
in magnetic field. An insulating stripe ferromagnetic phase is favored at one electron/hole per unit
cell.

In addition to superconductivity, recent experiments
on magic angle twisted bilayer graphene revealed insu-
lating phases at carrier concentrations corresponding to
partial occupation of the four narrow bands composite
near the neutrality point [1–3]. Such correlated insulator
phases seem to occur only when the bandwidth of the
composite is reduced either by fine-tuning of the twist
angle to the vicinity of the “magic” value ∼ 1.1◦ or by
tuning the applied pressure at ∼ 1.3◦ [1–3]. Importantly,
the insulating states occur at commensurate (rational)
fillings corresponding to 2 electrons/holes per moire unit
cell, with additional resistance peaks observed at fillings
of 1 hole/electron per unit cell and 3 holes/electrons per
unit cell [1–3]. This observation is hard to reconcile with
the notion that the insulation is due to Fermi surface
nesting, or the van Hove singularities, reconstructed by
electron-electron interactions, because such band struc-
ture features generically occur at incommensurate fill-
ings. Instead, the above observations suggest that the
effective Coulomb interaction dominates the effective ki-
netic energy[1, 3]. The former is given by the projec-
tion of the Coulomb interaction onto the Hilbert space
spanned by the narrow bands and is ∼ e2/ε`m ∼ 25meV ,
where the moire period `m ∼ 13nm. The effective di-
electric constant of the encapsulating boron nitride is
estimated as ε =

√
ε⊥ε‖ ≈ 4.4, where ε‖ = 6.6 and

ε⊥ = 3.0 [4]. The kinetic energy scale is given by the
bandwidth. Although there is no direct measurement of
the bandwidth, theoretical calculations routinely find it
to be . 10meV [1, 5–10]. Finally, the superlattice band
gap which separates the narrow bands from the rest of
the bands is extracted from transport activation gaps to
be ∼ 30− 40meV [1, 3].

Such considerations hint that, even if the physical sys-
tem is ultimately in an intermediate coupling regime,
a strong coupling approach may be more successful in
capturing the nature of the correlated phases. In this
approach the interaction-only Hamiltonian is minimized
first, and the kinetic energy term is then treated as a
perturbation[8, 11–20].

Here we present the analysis and the solution to the
strong coupling limit by projecting the Coulomb inter-
action onto the microscopically constructed exponen-

tially localized Wannier states (WSs) for the four nar-
row bands [7]. In doing so we find that there is a qual-
itative difference between the effect of the interactions
in twisted bilayer graphene narrow bands and the much
studied narrow band whose width is small due to the
exponentially vanishing overlap of the well separated lo-
calized orbitals i.e. a solid in an atomic limit. In contrast,
the small bandwidth in twisted bilayer graphene is a re-
sult of fine tuning (twist angle or pressure) and subtle
interference of the WSs, and, unlike in the atomic limit,
it is not necessarily a result of large spatial separation
of the exponentially localized WSs. Indeed, as shown
before, each WS of the twisted bilayer graphene narrow
bands has three main peaks on neighboring sites of the
triangular moire superlattice [6–8]. Therefore, for near-
est neighbor WSs on say, sites i and j, two peaks overlap
significantly (see Fig.1). Even though the integral under
both has to vanish by orthogonality, the integral under
each separately does not. This leads to a dramatically
new form of the interaction Hamiltonian projected onto
the narrow band basis – containing terms beyond the
“cluster Hubbard” term [8, 12] – which in turn leads to
different strong coupling phases as in the atomic limit.
Specifically, the usual anti-ferromagnetic super-exchange
mechanism fails and turns ferromagnetic. Due to approx-
imate spin-valley SU(4) symmetry, the fully spin-valley
polarized ferromagnet is found to be degenerate with a
spin-valley entangled state whose average total magnetic
moment per particle vanishes. We also find exact excited
states, which are spatially extended, and whose gap is
suppressed by Zeeman coupling to an external magnetic
field, making it (or at least its order parameter) a candi-
date for the experimentally observed correlated insulator
at 2 electrons/holes per moire unit cell. At 1 particle per
moire unit cell we find that the projected interactions fa-
vor an insulating stripe SU(4) ferromagnet. This state
may be a candidate for the insulator observed at the 1/8
filling [3] if the SU(4) degeneracy is lifted in favor of the
physical spin ferromagnet.

We start by writing the full Hamiltonian as

H = K + U, (1)

where the kinetic energy K is described by the tight-
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Figure 1. The centers of the hexagons correspond to the tri-
angular moire lattice spanned by primitive vectors L1,2. The
Wannier state (WS) wavefunction centered on the moire hon-
eycomb site j has three peaks at the neighboring triangular
moire sites (grey circles with vertical stripes). The WS on the
neighboring site i overlaps with it on the two hexagons (red
horizontal stripes). An example of a four fermion interaction
term, which is beyond the extended Hubbard model, appear-
ing in the strong coupling Hamiltonian Eqs.(6,9-11), is also
shown schematically.

binding model [7] based on the WSs and where the

Coulomb interaction is

U =
1

2

∑
r,r′

∑
σ,σ′=↑,↓

c†σ(r)cσ(r)V (r− r′)c†σ′(r
′)cσ′(r

′) .(2)

Projecting onto the four narrow bands is equivalent to
expanding cσ(r) solely in terms of the narrow bands WSs

cσ(r) =
1

3

∑
R

6∑
p=1

∑
j=±1

wR+δp,j(r)dj,σ(R + δp) , (3)

where integers m, n define the triangular moire lattice
vectors R = mL1 + nL2, the eigenvalue of the AA site
centered 3-fold rotation exp(j2πi/3) is labeled by j = ±1
and δ1,...,6 are basis vectors connecting the honeycomb
sites to the triangular sites (see Fig.1). To an excellent
approximation, WSs with j = ±1 correspond to different
valleys with very little valley mixing[7]. The factor of
1/3 is due to each honeycomb site position R+ δp being
counted three times.

The Coulomb interaction V (r) is screened due to the
presence of the metallic gates[1–3]. The separation be-
tween the gates sets the length-scale beyond which the
image charges exponentially diminish the repulsion[21].
Interestingly, the gate separation is comparable to the
moire unit cell. This, as well as the form of wR+δp,j(r)
justifies keeping only R = R′ in the sum below:

U =
1

2

∑
R,R′

∑
r,r′∈7

∑
σ,σ′=↑,↓

nσ(R + r)V (R + r−R′ − r′)nσ′(R
′ + r′) (4)

≈ 1

2

∑
R

∑
r,r′∈7

∑
σ,σ′=↑,↓

nσ(R + r)V (r− r′)nσ′(R
′ + r′), (5)

where nσ(r) = c†σ(r)cσ(r) and the sums over r, r′ are
restricted to be within the moire hexagon centered at
the origin (see shaded 7 in Fig.1).

Substituting the Eq.(3) into the above form, with
numerically calculated wR+δp,j(r) from the microscopic
model [7] we find that to an excellent approximation we
can replace V (r− r′) by its average over a region of size
set by the extent of wδp,j(r) within the moire hexagon V0,

and because V (r) is dominated by the small wavevectors,
we can ignore the valley mixing terms [6]. Thus,

U ≈ V0

2

∑
R

∑
j=±1

∑
σ=↑,↓

Oj,σ(R)

2

, (6)

where Oj,σ(R) =
∑

r∈7 nj,σ(R + r) and

nj,σ(R + r) =
1

9

∑
R̄,R̄′

6∑
p,p′=1

w∗R̄−R+δp,j
(r)wR̄′−R+δp′ ,j

(r)d†j,σ(R̄ + δp)dj,σ(R̄′ + δp′) (7)

≈
6∑

p,p′=1

w∗δp,j(r)wδp′ ,j(r)d†j,σ(R + δp)dj,σ(R + δp′) . (8)

It is clear that Oj,σ(R) is a superposition of not only density-like operators d†j,σ(R + δp)dj,σ(R + δp′) with
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p = p′, but also hopping-like terms with p 6= p′ which
may be of the same order of magnitude. For example,∑

r∈7 w∗δp,j(r)wδp+1,j(r) is non-negligible. This is despite
the WSs being orthogonal when r is summed over all
space; with r restricted to only one hexagon, the sum is
O(1). For fixed R, the orthogonality in turn forces terms
such as those with p = 1 and p′ = 2 to be negative of the
terms with p = 5 and p′ = 4, etc. In what follows, we
assume for clarity that the 3 peaks of each WS reside en-
tirely within the 3 neighboring hexagons with no support
elsewhere. We relax this assumption in the Supplemen-
tary material without any change to our conclusions [22].
To summarize,

Oj,σ(R) =
1

3
Qj,σ(R) + α1Tj,σ(R) , where (9)

Qj,σ(R) =

6∑
p=1

d†j,σ(R+ δp)dj,σ(R+ δp), (10)

Tj,σ(R) =

6∑
p=1

(
eiηp,jd†j,σ(R+ δp+1)dj,σ(R+ δp) + h.c.

)
,

(11)

where eiηp,j = (−)p−1ei(−)p−1θj , δ7 = δ1, and

α1e
iθj =

∑
r∈7 w∗R+δ2,j,σ

(r)wR+δ1,j,σ(r). (12)

α1e
iθj is generally a complex number and θ+1 = −θ−1.

This phase factor can be absorbed by applying a global
U(1) transformation on WSs. In the rest of the paper, we
will therefore assume θ+1 = −θ−1 = 0. For our WSs con-
structed from the projection method [22], α1 ≈ 0.23. Al-
though not all the above interaction terms have been in-
cluded in the model of Ref. [6], and although the Coulomb
interaction is not assumed screened in Ref.[6], similar
value for α1 can be estimated from their ratio of the
nearest-neighbor exchange and nearest neighbor density
repulsion as α(K)

1 ≈ 1
3

√
J1/V1 ≈ 0.16 (see Table I of

Ref.[6]); see also [28]. The nature of the ground state in
the strong coupling limit is insensitive to such differences.

We emphasize that it is not necessary to include the
kinetic energy terms K in Eq.(1) to induce correlation
among various sites; such sizable value of α1 makes
the projected interaction term (6) non-local even in the
strong coupling limit, and as we will see it dictates the
nature of the ground state. It is therefore worth under-
standing why α1 is sizable. In the atomic limit, this over-
lap is exponentially small. As a consequence, the interac-
tions usually include only the on-site terms, giving rise to
the Hubbard model; α1 would then be set by the ratio of
the bandwidth and the on-site repulsion. In our case, as
mentioned, the two of the three peaks of the neighboring
WSs spatially overlap and α1 ∼ O(1). This stems from
the fact that the emergent two-fold symmetry C ′′2 (see
Fig.1) is not locally implemented for our valley filtered
WSs [23]. Otherwise, when combined with (locally im-
plemented) C ′2 (see Fig.1) and the emergent valley U(1)

symmetry, all the WSs would have to have the same
parity under C ′′2 [23], leading to α1 = 0. However, C ′′2
cannot be locally implemented simultaneously with the
valley U(1), C ′2, and the time reversal symmetry[8, 23].
α1 ∼ O(1) is thus rooted in the non-trivial topological
properties of the narrow bands[8, 23–27].

As the first step, we therefore need to find the spectrum
of the interaction U in Eqn. (6). This is non-trivial be-
cause the commutator [Oσ,j(R), Oσ,j(R

′)] does not van-
ish for nearest neighbors R and R′ due to α1 6= 0. How-
ever, the ground state of (6) can be exactly solved for
special fillings, including 2 particles/holes per unit cell.
To see this, note that

∑
R

∑
j

∑
σ Oj,σ(R) = N̂ , where

N̂ is the total particle number operator. Therefore, we
can write (6) exactly as

V0

2

∑
R

n0 −
∑
j,σ

Oj,σ(R)

2

+ V0n0N̂ −
V0

2
n2

0NR(13)

whereNR is the total number of moire unit cells. Because
N̂ is fixed in the quantum number sector of interest, the
last two terms are fixed. The ground state thus minimizes
the first term. But the first term is a sum of squares of
Hermitian operators, and if we can find a state in which
each term vanishes, we find the ground state. Let n0 = 2.
Then the state

|Φ0〉 =
∏
R

d†j=1,↑(R + δ1)d†j=1,↑(R + δ2)|0〉 (14)

makes the first term vanish for every R, and is therefore
a ground state. This state actually corresponds to a fully
spin/valley polarized ferromagnet with two electrons per
moire unit cell.

This result can be recovered in the basis of Bloch
states. Starting with the most general Coulomb in-
teraction V̂ = 1

2

∑
q V (q)ρqρ−q with V (q) > 0 and

ρq =
∑
σ=↑,↓

∑
r e
−iq·rnσ(r), we project it to the Bloch

basis of the four narrow bands. Assuming no valley mix-
ing, the state

|Φ′0〉 =
∏
k

f†j=1,µ=1,↑(k)f†j=1,µ=2,↑(k)|0〉 , (15)

is the eigenstate of V̂ with the eigenvalue of E =
1
2

∑
G V (G) |Nj=1,G|2 where

∑
G sums over all the re-

ciprocal lattice vectors of the moire lattice. Here f†j,µ,σ is
the creation operator for the Bloch state in the narrow
bands with the valley j, band µ, and spin σ. The Fourier
transform of the charge density of the state |Φ′0〉 is

NjG =

ˆ
d2k

(2π)2

∑
r∈UC

dr
∑
µ

|ψjµk(r)|2 e−iG·r,

where the r sum is over the unit cell, and ψjµk(r) is the
Bloch state wavefunction with the valley j, the band µ,
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and the momentum k. As V (q) > 0, it is reasonable to
expect that |Φ′0〉 is also the ground state if V (q) decays
fast enough with increasing q. The states |Φ′0〉 and |Φ0〉
are equivalent, strongly suggesting that our conclusion is
independent of the choice of the basis.

Although |Φ0〉 is a ground state, it is not the only one
for the interaction in Eqn. 6. Due to the SU(4) symmetry
of Eq.(6), the ground state is (2NR+3)(2NR+2)(2NR+
1)/6 fold degenerate. This SU(4) ground state manifold
includes states as (see Fig.2(a))

|Φ1〉 =
∏
R

2∏
p=1

1√
2

(
d†1,↑(R + δp) + d†−1,↓(R + δp)

)
|0〉 .(16)

Note that the expectation value of the square of the total
(magnetic) spin operator 〈Φ1|S2

tot|Φ1〉 = O(NR), which
means that the magnetic moment per particle vanishes
in the thermodynamic limit. |Φ1〉 is therefore not a fer-
romagnet.

The ground state degeneracy is lifted by the kinetic
terms, K in Eq.(1), which in general break the SU(4)
symmetry. The valley U(1) symmetric hopping terms
t(R + δ,R′ + δ′)d†R+δ,j,σdR′+δ′,j,σ favor the state with
two valleys equally mixed, because then the second order
process is least blocked. For the same reason the hopping
terms that mix the valleys favor the state in which the
two valleys carry opposite spins. The ground states is
then given by Eqn. 16 up to a global spin SU(2) rotation.
The non-magnetic ground state depicted in Fig.2(a) is
thus favored by the kinetic terms.

=
1
2

|1 ↑⟩ + | − 1 ↓⟩  

(a) (b)

Figure 2. Schematic of the ground states at (a) 1/4 filling (2
electrons/holes per moire unit cell) and at (b) 1/8 filling (1
electron/hole per moire unit cell).

We can also find some of the excited eigenstates of
Eq.(6) exactly. In particular,

|N + 1, j, σ; p mod 2〉 =
∑
R

d†j,σ(R + δp)|Φ1〉, (17)

|N − 1, j, σ; p mod 2〉 =
∑
R

dj,σ(R + δp)|Φ1〉, (18)

have energies EN+1 = 13
6 V0 +EN and EN−1 = − 11

6 V0 +
EN , respectively, where EN = 2NRV0. The gap is there-
fore at most ∆ = EN+1 + EN−1 − 2EN = V0/3. Note
that the excitations (17)-(18) are spatially extended.

Even though the ground state |Φ1〉 does not couple
linearly to the Zeeman magnetic field, B, the excitations
do, and the gap closes upon the application of a critical
B.

In order to gain some intuition for the physics behind
the mathematical results discussed, imagine artificially
tuning α1 to be small. At α1 = 0, ground states of the
“cluster Hubbard” terms include states with one particle
per honeycomb site. The small hopping terms give rise
to exchange interactions O(α2

1), via both the usual sec-
ond order perturbation theory and directly via the first
order terms also of O(α2

1). The former would normally
be anti-ferromagnetic, but in this case contributions from
different hexagons cancel and only the latter, ferromag-
netic exchange, remains 1. The ground state manifold of
the “cluster Hubbard” Hamiltonian also includes states
which do not necessarily have one particle per site, but
the same argument applies [22].

Recent experiments also suggest that an insulating
state appears at the filling of one hole/electron per unit
cell, with the insulation enhanced by the Zeeman mag-
netic field [3]. We were unable to find the exact ground
state at this filling analytically, even in the strong cou-
pling limit because α1 6= 0. However, the ground state
can be found if α1 is small. The leading term in U
is given by the “cluster Hubbard” terms, with ground
states for which each hexagon contains three fermions,
and

∑
j,σ Qj,σ(R) = 3. Such ground states are highly

degenerate even without counting the valley and spin de-
grees of freedom. The linear order and the second order
of the cross term

∑
R

(∑
j,σ Qj,σ(R)

)(∑
j′,σ′ Tj′,σ′(R)

)
vanish for the same reason as discussed above. Therefore,

to the order O(α2
1), only the term

∑
R

(∑
j,σ Tj,σ(R)

)2

contributes. This contribution is minimized if (1) each
hexagon contains exactly three occupied sites; (2) each
occupied site is in the same state; (3) the number of
bonds connecting an occupied site and an unoccupied site
is minimized. These constraints favor the stripe SU(4)
ferromagnetic phase as the ground state, see Fig. 2(b),
with the energy correction δE = α2

1NRV0/2. This phase
is also an insulator due to the existence of the charge gap.

To summarize, we analysed the Coulomb interactions
(screened by the gates) projected to the exponentially
localized Wannier states[7] for the four narrow bands in

1 Recently, the ferromagnetic ground state is proposed to account
for the insulator phase found in trilayer graphene, with the triv-
ial band structure [29]. However, the ferromagnetic exchange
interaction in Ref. [29] is found to be one order smaller than the
on-site repulsion.
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the “magic angle” twisted bilayer graphene. The pro-
jected interaction is highly non-local and is beyond ex-
tended Hubbard models. Such novel interactions result
from the non-trivial topological properties of the nar-
row bands[8, 23], giving rise to the SU(4) ferromagnetic
ground states at 1/4 and 1/8 filings. At 1/4 filling, the
kinetic terms break the SU(4) symmetry and select the
state in which two valleys with opposite spins are equally
mixed (Fig. 2(a)). This state, although still SU(4) fer-
romagnetic, is (physical) spin non-magnetic in the ther-
modynamic limit, with a charge gap suppressed by the
magnetic field. We also argue that the stripe SU(4) fer-
romagnetic insulator phase is the ground state at 1/8
filling (Fig. 2(b)). If the SU(4) degeneracy is lifted in
favor of the physical spin ferromagnet, such state could
be a candidate for the experimentally observed insulator
at the 1/8 filling [3]. The mechanism of such symmetry
breaking remains an open problem.

Note added. Recently, after the submission of our
manuscript, another theoretical work [30] was posted on
arXiv, which includes a subset of the interactions de-
scribed in Eqn. 6 and finds the spin ferromagnetic state
at one-quarter filling.
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