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We report the formation of magnetic eigenstates assisted by naturally occurring particle dissipa-
tion in a Bose–Einstein condensate of spin-2 87Rb atoms. Although the atomic interaction energet-
ically favors the non-ferromagnetic state, we observed the spontaneous evolution of an unpolarized
spin state into the transverse ferromagnetic state. Under such dynamics, the spin-dependent dissi-
pation of atoms enhances the synchronization of the relative phases among five magnetic sublevels to
promote magnetization. Through numerical simulations based on mean-field theory, we show that
another exotic magnetic eigenstate, the cyclic state, can also be formed through the spin-dependent
dissipation of atoms.

Clarifying the various effects of energy and particle
dissipation coupling to the environment will lead to a
deeper understanding of open quantum systems and will
expand the applications of quantum physics. Dissipation
often reduces the quantum coherence, which is a major
problem in quantum information science, such as quan-
tum computation and quantum simulation [1]. On the
other hand, dissipation sometimes has the opposite ef-
fect of promoting quantum coherence, and such dissipa-
tion can be used as a new control strategy for quantum
systems and as a useful resource for quantum computa-
tions [2]. Through proper design of the coupling between
the system and the surrounding environment, it is possi-
ble to prepare a desirable pure quantum state in an open
quantum system to explore quantum simulation using
strongly correlated many body states [3]. The stabiliza-
tion of entangled qubits in superconductor and atomic
ions [4, 5] and the control of quantum phase transitions
in cold atoms [6] have been experimentally demonstrated
by exploiting controllable dissipation.

Beneficial effects of dissipation are also caused by un-
controllable naturally occurring dissipation. Natural dis-
sipation has been used to protect quantum states in opti-
cal applications. Optical loss maintains a coherent state
or brings other states closer to a coherent state [7]. Un-
der such energy dissipation, photons are lost, but the
phases between the photon-number bases are not ran-
domized, enabling the transmission of light while main-
taining the phase of the complex amplitude of the light
field. Recently, prolonging the coherence time under nat-
ural dissipation has been discussed in biological systems
to understand efficient processes in nature [8]. In pho-
tosynthetic systems, such an effect is related to efficient
electron transport [9, 10].

In this Letter, we investigate the magnetization dy-
namics in dissipative Bose–Einstein condensates (BECs)
of spin-2 (hyperfine spin F = 2) 87Rb atoms. We
experimentally observed the emergence of symmetry-

breaking magnetization from an unpolarized spin state.
Symmetry-breaking magnetization has been observed in
a spin-1 87Rb BEC [13], in which the magnetization is in-
duced by the ferromagnetic interactions between atoms.
In contrast, in a spin-2 87Rb BEC [11], although the cor-
responding interactions are not ferromagnetic, the unpo-
larized spin state evolves into a transverse ferromagnetic
state.

We found from the comparison of experimental and
theoretical results that spin-dependent particle dissipa-
tion plays an essential role in the formation of a ferro-
magnetic state. In this system, the F = 2 state of 87Rb
atoms undergoes inelastic collisional loss, in which two
F = 2 atoms collide and escape from the trap by a tran-
sition from the F = 2 state to the F = 1 states [12]. Al-
though the total spin F of the two colliding F = 2 atoms
can be F = 4, 2, or 0, decay through the F = 4 channel
is prohibited by angular-momentum conservation, since
the F = 1 state cannot participate in the F = 4 channel.
In other words, inelastic collisional loss of two atoms is
suppressed when they are fully magnetized in the same
direction. As a consequence, the magnetized state ac-
cumulates and is purified in the trap by the dissipation
of other states. This magnetization dynamics is in stark
contrast to the conventional dynamics, in which the spin
vectors align in the same direction to lower the interac-
tion energy [13].

A schematic of the observed spinor dynamics is illus-
trated in Fig. 1. We performed the experiments us-
ing a spin-2 BEC consisting of the five magnetic sub-
levels, m = −2,−1, 0,+1, and +2. The magnetization,
Si, along the i-axis was obtained from the population in
each magnetic sublevel, ρm,i, with the i-axis as the quan-
tization axis (Si = Σmmρm,i). The atoms were initially
prepared in the |F = 2,m = 0〉 state with the quantiza-
tion axis along a magnetic bias field on the z-axis. This
state is the completely unpolarized spin state with rota-
tional symmetry around the z-axis [Fig. 1(a)]. After time
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FIG. 1: Conceptual diagram of coherence formation assisted
by spin-dependent particle dissipation. (a) The as-prepared
unpolarized spin state of |F = 2, m = 0〉, where F and m
are the quantum numbers for the total angular momentum
and the Zeeman sublevel, respectively. The populations in
the |2, m〉 states are depicted in the grey box. (b) and (c)
show the spin states after time evolution with and with-
out dissipation, respectively. The sinusoidal curves represent
the phases sinΦm = sin (mωt+ φm), where ω is the linear
Zeeman frequency under a magnetic field in the z-direction.
The phase offset, φm, is expressed by different colors. The
atoms populate all five components in both (b) and (c). The
fully polarized transverse magnetization is generated only
in a dissipative system, namely Φm obeys the relationship
Φ2−Φ1 = Φ1−Φ0 = · · · = Φ−1−Φ−2 due to the dissipation.

evolution, the atoms were distributed into all m compo-
nents by two-body elastic collisions while preserving a
longitudinal magnetization Sz of zero. Similar dynam-
ics of ρm,z have previously been investigated experimen-
tally [14–16]. The most significant difference from the
previous studies is that we also measured the transverse
magnetization, S⊥ = S cosα, orthogonal to the z-axis,
making it possible to obtain information on the phase

coherence, where S =
√

S2
x + S2

y is the magnitude of the

transverse magnetization and α is the azimuth angle of
the spin vector. We found that the transverse magnetiza-
tion is almost fully polarized, S ≃ 2, after time evolution.
Transversely fully polarized state rotating on the x − y
plane is expressed by the two-axis rotation of the longi-
tudinally fully polarized state as follows:
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where the operator R̂i(θ) rotates the spin state around
the i-axis by an angle θ. In such state, the phases in the
magnetic sublevels, Φm, satisfy Φ2 − Φ1 = Φ1 − Φ0 =
Φ0−Φ−1 = Φ−1−Φ−2. Therefore, the generation of the

transverse magnetization with S ≃ 2 implies the forma-
tion of phase coherence. The atoms distributed in the
five m components therefore acquire phase correlation,
and the phases rotate with the Zeeman frequency syn-
chronously [Fig. 1(b)]. On the other hand, phase syn-
chronization does not occur in a numerical simulation
without dissipation [Fig. 1(c)]; thus, it can be concluded
that the phase synchronization is due to dissipation.

We used a BEC trapped in a crossed far-off-resonance
optical trap (FORT). The axial and radial frequencies of
the FORT are ωz/(2π) = 64 Hz and ωr/(2π) = 190 Hz,
respectively. The external magnetic field ofBz = 200 mG
is aligned with the axis of the trap (z direction), which
produces a quadratic Zeeman shift, |q|/h ≃ 3 Hz. The
pure |2, 0〉 state is produced from the state occupying the
multiplem levels by using microwave pulses and a blasted
beam [see Supplemental Material (SM)]. The purity of
the |2, 0〉 state in this study was greatly enhanced relative
to that in our previous experiment [16], to remove other
components. The BEC prepared in the |2, 0〉 state was
then held in the optical trap for a variable time of Thold.
To measure Sz , the BEC was released from the trap, and
each m component was spatially separated along the z
direction using the Stern-Gerlach method. On the other
hand, to measure S⊥ orthogonal to the z direction, we
irradiated the BEC with a π/2 radio frequency (rf) pulse
just before releasing it from the trap. The π/2 rf pulse
effectively rotated the measurement axis by π/2. After a
time of flight for 15 ms, the spatial distribution of each m
component was measured using absorption imaging. The
number of atoms in each m component was estimated by
performing the bimodal fitting of the atomic distribution.
The longitudinal or transverse magnetization per atom,
Si, was calculated from ρm,i.

We first experimentally investigate the spinor dynam-
ics along the longitudinal axis (z-axis). Figure 2(a) shows
the dependence of ρm,z on the free-evolution time, Thold.
The m = ±1 components grow after Thold ≃ 30 ms, fol-
lowed by a delayed growth in the m = ±2 components
after Thold ≃ 50 ms. The initial slow rise of the m = ±1
components in Fig. 2(a) reflects the metastability of the
m = 0 state [14, 17]. Indeed, in the case where the
initial state includes components other than the m = 0
state, the initial change is faster (see SM). The longi-
tudinal magnetization, Sz, calculated from the results
shown in Fig. 2(a) remains almost stable around zero,
as shown in Fig. 2(b). As shown in the inset of Fig.
2(a), the total number of atoms is reduced, mainly due
to spin-dependent particle dissipation by inelastic colli-
sional loss. The degree of loss by other processes such
as photon scattering from the dipole trap was estimated
using the |2,−2〉 state, which is immune to inelastic col-
lisional loss [18]. In this case, the total loss of atoms at
Thold = 150 ms is less than 10%.

We next investigate the dynamics of S⊥. As for the dy-
namics measured along the z-axis, no change is seen up to
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FIG. 2: Observation of the spinor dynamics starting from an
unpolarized spin state |2, 0〉. (a) Time evolution of the pop-
ulations ρm,z in the magnetic sublevels m. The inset shows
the total number of atoms. (b) Dynamics of the longitudinal
magnetization, Sz. (c) Dynamics of the transverse magneti-
zation, S⊥. (d) Normalized occurrence distribution of |S⊥|
obtained during Thold = 120 - 150 ms. The histogram with a
bin width of 0.2, was constructed from 60 experimental data
points in (c), and the red empty histogram indicate the fitting
results.

Thold ≃ 30 ms. However, unlike for the dynamics of ρm,z,
the shot-to-shot variations in ρm,⊥ for each Thold greatly
increase after Thold ≃ 30 ms, which results in S⊥ vary-
ing between −2 and +2, as shown in Fig. 2(c). We now
consider the cause of the shot-to-shot variations in S⊥

observed in Fig. 2(c). Since the initial m = 0 state has
rotational symmetry around the z-axis, the occurrence
of transverse magnetization should be a consequence of
spontaneous breaking of the rotational symmetry. There-

FIG. 3: Evolution of the magnetization from numerical sim-
ulation. The blue and red curves are obtained by solving the
3D GP equation with and without the dissipation of atoms,
respectively. In the green curve, the quadratic Zeeman effect
is excluded.

fore, the azimuth angle of the spin vector, α, becomes
random for each measurement, resulting in variation of
S⊥ = S cosα. The change of α corresponds to adding the
phase −mα to each Φm. In addition, α fluctuates due to
the temporal fluctuation of the magnetic bias field.

We evaluate the magnitude of S that best fits the
60 experimental data points of |S⊥| obtained during
Thold = 120–150 ms in Fig. 2(c). When S reaches a cer-
tain value and assuming α is random and uniform over
[0, 2π], the probability distribution of |S⊥| is represented
by p(|S⊥|) ∝ (S2 − |S⊥|

2)−1/2, where 0 ≤ |S⊥| ≤ S.
The red outline histogram in Fig. 2(d) shows p(|S⊥|)
integrated within the bin width for S = 1.9.

We perform three-dimensional numerical simulations
of the Gross-Pitaevskii (GP) equation (see SM). Fig-
ure 3 shows a typical example of the time evolution of
the transverse magnetization S. Magnetization is never
produced under a condition of zero magnetic field, cor-
responding to the green curve in Fig. 3. When the
quadratic Zeeman energy is included, as shown by the
red curve, the magnetization initially grows but then de-
creases. The magnitude of the magnetization is limited
to no more than S ≃ 1, and thus this result disagrees
with the experimental findings. The initial growth in the
magnetization is due to the combined effect of the s-wave
spin-exchange interaction and the quadratic Zeeman ef-
fect. The energies of the m = ±1 and m = ±2 states are
lowered by the quadratic Zeeman energy qm2(q < 0), and
the transitions from the m = 0 state to these states are
enhanced. The quadratic Zeeman effect also rotates Φm

by (qm2/~)t, which results in temporal modulation of S.
Thus, the quadratic Zeeman effect produces magnetiza-
tion, but never synchronizes the phase Φm to enhance
the magnetization.

Next we solve the GP equation by taking into account
spin-dependent particle dissipation. As shown in the blue
curve in Fig. 3, the increase in the magnetization up to
Thold ≃ 60 ms is similar to that for the case without par-



4

ticle dissipation. Unlike the non-dissipative system, the
magnetization in the dissipative system continues to in-
crease, which is in qualitative agreement with the exper-
imental result in Fig. 2. This result indicates that the
growth of magnetization after Thold ≃ 60 ms is driven
mainly by the spin-dependent dissipation. However, the
blue curve in Fig. 3 does not reach the values of S ≃ 1.9
obtained in Fig. 2(d), which may be due to effects not
taken into account in the simulations, such as thermal
effects [22].

The growth of magnetization by particle dissipation is
described by the spin-dependent part of the energy:

Espin =

∫

dr

(

g4 − g2
14

s · s+
7g0 − 10g2 + 3g4

14
|A0|

2

)

,

(1)
where gF is the interaction coefficient for the colliding
channels of total spins F = 4, 2, and 0; s is the magneti-
zation density; and |A0| is the spin-singlet density. The
spin-dependent particle dissipation is expressed by the
non-positive imaginary part of the interaction coefficient
gF [12]. The imaginary part of the first term represents
the relative enhancement or suppression of the magneti-
zation, depending on its sign. As mentioned above, de-
cay through the F = 4 channel is prohibited (Img4 = 0)
and the imaginary part of the coefficient of s · s is al-
ways non-negative, which enhances |s| relative to the to-
tal density. The magnetized state is thus more likely to
survive than any other state under spin-dependent par-
ticle dissipation, which leads to the formation of the fer-
romagnetic eigenstate. In other words, spin-dependent
dissipation assists the synchronization of Φm to promote
the transverse magnetization. This is quite different from
the phase decoherence due to the dissipative environ-
ment; the present effect of dissipation protects the spe-
cific eigenstate.

From the form of Eq. (1), we find that the singlet-pair
density |A0| is also enhanced or suppressed by the spin-
dependent particle dissipation, which suggests that other
magnetic eigenstates can emerge depending on the values
of Im gF . One such eigenstate is the cyclic state, which
is a BEC of singlet trios of spin-2 atoms [11, 19–21]. The
cyclic state emerges when the singlet-pair density |A0|
and the magnetization |s| are both suppressed. As men-
tioned above, the imaginary part of g4 − g2 in Eq. (1) is
always non-negative, which causes |s| to increase. How-
ever, if |A0| decreases before |s| grows, the cyclic state
can be formed. This is achieved when |Img0| is large and
|Img2| is small. Figure 4 shows the time evolution of |s|
and |A0| for such a case for Img0 and Img2. The initial
state is R̂x(π/2)|2, 0〉. The blue curve in Fig. 4 shows
that |A0| decays to almost zero in the presence of parti-
cle dissipation while |s| remains small, indicating that the
cyclic state is formed. The spherical harmonic represen-
tations of the spin states also show that the initial polar
state evolves into the cyclic state, as shown in the inset

0 ms

150 ms

Cyclic state

≒

|s|

FIG. 4: Formation of the cyclic state (magnetic eigenstate).
Numerical simulation of the time evolution of |A0| and |s|,
when Img0 and Img2 are ten times and one-tenth their values
for 87Rb, respectively. The initial spin state is R̂x(π/2) |2, 0〉.
The size of the magnetic field, Bz, is 50 mG. The spheri-
cal harmonic representations of the spin states at the centre
of the condensate are shown in the insets (see Supplemental
Material).

of Fig. 4. It is notable that such tetrahedral symme-
try arises from particle dissipation. Both the initial state
and the cyclic state have populations in the m = 0 and
m = ±2 states, with relative phases of φ2+φ−2−2φ0 = 0
for the initial state and π for the cyclic state. Thus the
spin-dependent particle dissipation also affects the phases
Φm in the generation of the cyclic state.

We have experimentally and theoretically investigated
the role of dissipation in a BEC of spin-2 87Rb atoms and
found that particle dissipation can give rise to quantum
coherence. Although the interactions between the atomic
spins are not ferromagnetic, we nonetheless observed the
emergence of transverse magnetization, in which the rel-
ative phases among the five magnetic sublevels are syn-
chronized. Numerical simulations revealed that this phe-
nomenon is mainly due to spin-dependent particle dissi-
pation. It has also been shown that with appropriate loss
parameters, such dissipation can lead to the formation of
a cyclic magnetic state. These results indicate that nat-
urally occurring dissipation gives rise to robustness of
quantum coherence.
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