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Abstract: In many physical processes, including cloud electrification, electrospray and 15 

demulsification, droplets and bubbles are exposed to electric fields and may either remain whole 16 

or burst in response to electrical stresses. Determining the stability limit of a droplet exposed to 17 

an external electric field has been a longstanding mathematical challenge, and the only analytical 18 

treatment to date is an approximate calculation for the particular case of a free floating droplet. 19 

Here we demonstrate, experimentally and theoretically, that the stability limit of a conducting 20 

droplet or bubble exposed to an external electric field is described by a power law with broad 21 

generality, that, in practice, applies to the cases in which the droplet or bubble is pinned or 22 

sliding on a conducting surface, or free floating. This power law can facilitate the design of 23 

devices for liquid manipulation via a simple formula that captures the parameter range of bubbles 24 

and droplets that can be supported on electrified surfaces.  25 
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Main Text: A liquid droplet will typically deform when subject to an electric field, owing to the 26 

generation of electrical stresses at its surface. For sufficiently strong electric fields, the drop may 27 

become mechanically unstable and emit charged microscopic liquid jets  [1,2]. A laboratory 28 

curiosity a century ago  [3,4], the electrical stability limit of droplets was first recognized to be of 29 

meteorological importance, for example in determining the size of water droplets in 30 

thunderstorms and creating preferred conduction paths for lightning strikes  [5,6]. The stability 31 

limit of a conductive free floating droplet in a uniform electric field was first determined by G.I. 32 

Taylor by a combination of experiment and dimensional analysis (Fig. 2b(i))  [7], and later by an 33 

approximate calculation wherein the deformed shape of the droplet was assumed spheroidal  [1]. 34 

 35 

Further investigations of the stability of electrified droplets and the dynamic process of jet 36 

emission  [1,2,8] provided the conceptual basis for several important technologies. These include 37 

electrospraying, wherein a liquid confined at the orifice of a nozzle is electrified above its 38 

stability limit in order to controllably produce fine liquid droplets or ionized mists  [9]. This 39 

technique underlies methods of high-resolution printing  [10], mass spectrometry  [11], ion beam 40 

generation  [12], air purification  [13], and space propulsion  [14]. Similarly, electrospinning 41 

involves ejecting fine liquid filaments from electrified droplets  [15] for manufacture of fibers for 42 

filters  [16], composite materials  [17], nanogenerators  [18], tissue scaffolds  [19], and drug 43 

delivery devices  [20]. Careful application of an electric field below the droplet stability limit is 44 

also used to control mixing and coalescence of emulsion droplets  [21,22]. 45 

 46 

Despite longstanding scientific and practical interest, an analytical representation for the stability 47 

limit of electrified droplets has not been derived for the simplest general case, namely, that of a 48 
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conducting drop on a conducting surface exposed to a uniform external field in a dielectric 49 

medium (Fig. 1). The particular case where the droplet’s surface intersects the conducting 50 

surface at a right angle corresponds to half of a free floating droplet in a uniform electric field. In 51 

the absence of an analytical treatment, numerical computations have been performed  [23–26] 52 

and engineering development often involves semi-empirical formulas and trial-and-error  [11–53 

14,16,17,19,22]. 54 

 55 

The difficulty in modelling the droplet’s stability arises from the fact that the droplet’s critically 56 

stable shape, i.e., the limiting static shape just prior to bursting through the rapid formation of a 57 

jet (Fig. S1), does not appear to be elementary, and the family of critically stable shapes found by 58 

varying parameters exhibits no apparent similarity (Fig. 2a). These shapes are also quite different 59 

from the spherical shape the droplet would assume in the absence of the electric field. Moreover, 60 

the configuration of the electric field, the shape of the droplet, and the liquid pressure inside the 61 

droplet are coupled, which requires all to be solved for simultaneously, unlike solving for the 62 

shape of a droplet in a gravitational  [27] or centrifugal field  [28]. Mathematically, this problem 63 

poses a set of coupled nonlinear partial differential equations where the solution must satisfy the 64 

balance of electrostatic, surface tension, and internal liquid pressures normal to the droplet’s 65 

equipotential surface  [24]. These pressures are all conservative, so an equivalent formulation is 66 

to find the free energy minimum from an integrated form of the coupled nonlinear differential 67 

equations  [29]. In neither case does a known closed-form solution exist. Here we show that, 68 

provided the effect of gravity is negligible, the stability limit for a conducting droplet on a 69 

conducting surface follows a power law, simply derivable by the variational principle, that is in 70 
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excellent agreement with our experiments (Fig. 2b). The power law captures the cases for which 71 

droplets or bubbles are either pinned or sliding on the conducting surface, or free floating. 72 

 73 

Our experiment apparatus comprises a metal plate with a circular hole machined through the 74 

center, within which resides a metal needle with its tip coincident with the plate’s surface (Fig. 75 

1). For each experiment, the plate and needle are electrically grounded, and a second parallel 76 

plate is situated above and held at a different constant electrical potential. The dimensions and 77 

separation distance between the plates are such that a uniform far field 0E  is established  [30]. 78 

Soapy water (surface tension 0.029N/mγ = ) is slowly dispensed through the needle by a 79 

motorized syringe, which establishes and feeds a droplet confined to the outer radius R of the 80 

needle tip by a small air gap of negligible dimension between the needle and plate. A high-speed 81 

camera records the droplet as it quasi-statically increases in volume and then becomes unstable 82 

(Fig. S1). The droplet behaves as a conductor because the timescale for cancellation of the 83 

electric field inside the droplet is much smaller than the timescale for filling the droplet over the 84 

course of the experiments. Specifically, the timescale for filling the droplet is 1~ 10  sec, and the 85 

timescale for electrical relaxation is 41.3 10E l lτ ε σ −= < ×
%

 sec  [31], where 080lε ε≈  and 86 

65.6 10lσ −×  S/m are the permittivity and conductivity of the soapy water, and 87 

12
0 8.85 10 F/mε −= × is the vacuum permittivity. Note that ambient air surrounds the droplets, so 88 

0ε ε≈ . At these fill rates, the dynamic fluid pressures inside the droplet are negligible (see SI). 89 

The video frame containing the critically stable droplet shape is image processed to calculate 90 

relevant quantities, specifically the droplet’s volume V, apex height H and contact angle θ (Fig. 91 

1). 92 



5 
 

 93 

The full range of experimental data was acquired by systematically changing 0E  for two needle 94 

radii [ ]0.46,0.74 mmR =  in order to work within two experimental constraints: (1) avoiding 95 

electrical breakdown of the air which limits 0E ; and (2) requiring the effect of gravity to be 96 

negligible, i.e., the Bond number 2/3 0.1gVρ γ <
%

, where the soapy water density 3 310 kg/mρ ≈ , 97 

and the gravitational acceleration 29.8m/sg = . Practically, this meant that R could not exceed 98 

~1mm, otherwise, gravity would become significant  [32]. The range of the experimental results 99 

was ultimately limited by the electrified droplets depinning from the edge of the needle before 100 

becoming unstable at 0θ ≈  and 2θ π≈ . 101 

 102 

For each experiment, the stability limit is fully specified by γ , 2
0Eε  and two geometric 103 

parameters that define the droplet shape; specifically we choose the droplet volume V and radius 104 

R. This set of parameters comprises two dimensionless groups which are functionally related 105 

according to the Buckingham Pi theorem  [33] : 
2
0E
R

ε
γ

, a ratio of characteristic electrostatic and 106 

capillary pressures (i.e. the electrical Bond number), and 
3R

V
, a shape parameter. The absolute 107 

length scale of the experiment enters only through the dimensionless group 
2
0E
R

ε
γ

 through R; 108 

thus, it is natural to choose R as the unit scale of the coordinate axes for displaying the family of 109 

critically stable droplet shapes (Fig. 2a). 110 

 111 
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We proceed by demonstrating that these two dimensionless groups must be proportional to one 112 

another. The quasi-static droplet shapes observed during experiments all correspond to minima 113 

of the free energy F, i.e., 0dF = , and the critically stable droplet shapes are the limiting case at 114 

which 0dF = . Let an arbitrary variation about some particular critically stable droplet shape be 115 

parameterized by the dimensionless parameter ξ , where the critically stable shape is 0ξ ξ= . 116 

Only variations at constant volume are physical and the experiment is performed at constant 117 

ambient temperature. Therefore there are only two nonzero terms comprising dF , specifically 118 

the differential changes in surface energy ( )dU γ ξ  and electrostatic energy ( )EdU ξ  due to the 119 

variation. Hence ( )0 0( ) ( ) 0EdF U U dγ ξ ξ ξ′ ′= + = , or equivalently 0 0( ) ( ) 0EU Uγ ξ ξ′ ′+ =  because 120 

the variation dξ  is arbitrary; the prime superscript denotes a partial derivative with respect to ξ . 121 

 122 

The surface energy of the droplet may be written as 2( ) ( )U R aγ ξ γ ξ= , where 2 ( )R a ξ  is the 123 

droplet’s surface area and ( )a ξ  is a dimensionless shape function. The energy of the electrostatic 124 

field due to the presence of the droplet may be written as 2
0( ) ( )EU E Vξ ε υ ξ= , where similarly 125 

( )υ ξ  is a dimensionless shape function. The scaling intuition for ( )EU ξ  is that the uniform far 126 

field 0E  sets the scale of the energy density everywhere to be 2
0Eε , and the relevant cubic length 127 

scale is V . However, it is important to bear in mind that the electrostatic field at the surface of 128 

the droplet has a complicated relationship to 0E  due to of the coupling between the droplet shape 129 

and electric field configuration (see SI). More precisely, ( )EU ξ  is the difference between the 130 

electrostatic energy of the field surrounding the droplet and that of the spatially homogeneous 131 

field 0E  that would exist in the droplet’s absence (i.e. for 0V ≡ ). The same expression for 132 
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( )EU ξ  is also found by considering the polarization energy of the free floating shape in the 133 

uniform electric field 0E  defined by the equipotential surface comprised of the critically stable 134 

droplet’s surface and the surface of the metal plate (see SI). An explicit expression for ( )υ ξ  135 

generally involves an infinite series of Legendre functions found by solving an eigenvalue 136 

problem constructed for the critically stable shape 0ξ ξ=   [34,35]. The coefficients multiplying 137 

each term in the infinite series must conspire such that V  simply multiplies ( )υ ξ , and it is 138 

assumed that ( )EU ξ  includes the energy spent transferring charge to the surface of droplet and 139 

metal plate so that the electrical potential remains constant. 140 

 141 

The variation about 0dF =  therefore becomes 2 2
0 0 0( ) ( ) 0E V R aε υ ξ γ ξ′ ′+ = , or equivalently 142 

12 3
0 0

0

( )
( )

E R
R V a

ε υ ξ
γ ξ

−
′⎛ ⎞

= −⎜ ⎟ ′⎝ ⎠
. Again, because the variation is arbitrary, we may infer that 0

0

( )
( )

c
a
υ ξ

ξ
′

− =
′

, 143 

where c a positive dimensionless coefficient. Substituting and rearranging yields the power law 144 

for the critically stable droplet shapes 
23
0ER c

V R
ε
γ

= . Fitting to experiment yields the 145 

proportionality constant 2c π≈  (Fig. 2b) and therefore  146 

23
0

2
ER

V R
επ
γ

= .       (1) 147 

 148 

The geometric parameters V and R are special choices because they are the only two geometric 149 

parameters that are constant with respect to the variation. The power law results from the 150 

substitution 0 0( ) ( )caυ ξ ξ′ ′= −  above, which removes the complicated details of the critically 151 



8 
 

stable droplet shapes that reside in 0( )a ξ  and 0( )υ ξ . For this reason, we expect Eq. 1 to remain 152 

valid for the critically stable droplet shapes with 2θ π>
%

, which were beyond our experimental 153 

capabilities. From a dimensional analysis point of view, V and R are not unique choices and may 154 

be exchanged for any two geometric parameters that define the droplet shape. Historically, the 155 

choices have been H and R  [1,7,8,23,24] , which yield the dimensionless groups 
2
0E
R

ε
γ

 and R
H

. 156 

However, H is not constant with respect to the variation and therefore the above derivation 157 

cannot be repeated to arrive at an analogous power law. Essentially, the complicated details of 158 

the critically stable droplet shapes reside within H, which precludes a power law between these 159 

dimensionless groups (Fig. S2). This discussion illustrates the importance of our choice of the 160 

governing parameter set 2
0, , ,E V Rγ ε⎡ ⎤⎣ ⎦ . 161 

 162 

Strictly speaking, our analysis applies to the case of a droplet pinned to the substrate at a fixed 163 

contact radius R. Practically however, Eq. 1 also captures the stability limit of droplets 164 

constrained by a constant contact angle θ with a substrate. Provided there exists any miniscule 165 

amount of contact angle hysteresis for the droplet on the surface, as is typically the case in 166 

practice  [36], the appropriate types of variations about the critically stable droplet shape are 167 

those at constant R because θ may vary infinitesimally within the finite window of contact angles 168 

provided by the hysteresis. In this case, Eq. 1 is exact.  For example, a droplet subject to an 169 

electric field of slowly increasing strength 0E  will progress through a continuum of quasi-static 170 

shapes with changing R in order to satisfy the constraint on θ, which in this example is the 171 

receding contact angle (Fig. 2c,  [36]). This may be viewed as changing the absolute scale in 172 

accordance with R until reaching the limit of stability, at which R is constant for variations about 173 
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the critically stable droplet shape. The relationship between θ and 
2
0E
R

ε
γ

 is given in Fig. 2d; these 174 

quantities are in fact the two dimensionless groups that may be constructed from the governing 175 

parameter set 2
0, , ,E Rγ ε θ⎡ ⎤⎣ ⎦ . 176 

 177 

The critically stable droplet shape for 2θ π=  is a special case because the surface of the droplet 178 

together with the surface of the metal plate define an equipotential surface corresponding to half 179 

of a free floating droplet in the uniform field 0E . Previous experiments performed for this 180 

special case used centimetric soap bubbles placed between parallel plate electrodes, and were 181 

performed by slowly increasing 0E  until the stability limit was reached as described in Fig. 2c; 182 

the results coincide with Eq. 1 (Fig. 2b(i,ii))  [7,24]. G.I. Taylor’s calculation  [1], which re-183 

expressed in our parameters yields 
2
0 0.170E
R

ε
γ

=  and 
3

0.251R
V

= , coincides with the square 184 

indicated by (i) in Fig. 2b. 185 

 186 

In summary, we find that a single power law (Eq. 1) captures the electrical stability limit for any 187 

finite conductivity droplet (e.g., any aqueous or ionic solution) on timescales greater than its 188 

electrical relaxation time. The radius of the droplet may range from ~1 mm, above which 189 

gravitational forces become significant, to ~100 nm or smaller, below which charge screening 190 

lengths and Van der Waals forces are significant  [37]. The power law can aid in understanding 191 

natural and engineered systems, and provides a practical design criterion for application 192 

development. For instance, the performance of industrial-scale electrospinning  [38], electrostatic 193 

filtration  [13], demulsification  [39], and condensation-driven thermal systems  [40] often relies 194 
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on the design of surfaces that carefully manage the supply and electrostatic stability of droplet 195 

arrays or liquid films.  196 
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 263 

FIG. 1. Experimental setup for determining the stability limit of soap-water droplets on a 264 

conducting surface subject to a uniform electric field 0E  in a dielectric medium ε . The droplet 265 

has surface tension γ and is pinned to the outer radius R of a metal needle tip coincident with the 266 

surface of a metal plate. Liquid is slowly dispensed into the droplet until it becomes unstable. 267 

The camera frame capturing the critically stable droplet shape (as shown here) is image 268 

processed to calculate its volume V, height H, and contact angle θ.  269 
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 270 

FIG. 2. Experiment results for the critically stable droplets. (a) The critically stable droplet 271 

shapes constitute a continuous family where each is non-elementary and non-similar to any 272 

other. (b) A power law relating the dimensionless groups characterizes the stability limit of the 273 

droplets. The black line is Eq. 1. The square data points and corresponding inset pictures are for 274 

critically stable soap bubbles on a metal plate exposed to a uniform field from experiments 275 

performed in (i) 1925  [7] and repeated in (ii) 1990  [24]. (c) A droplet constrained to slide on a 276 

surface with constant contact angle θ progresses through the following sequence for a slowly 277 

increasing electric field 0E : (i) for 0 0E = , the droplet shape is a spherical cap; (ii) as 0E  278 

increases, the droplet deforms and contracts its contact radius R; (iii) At the limit of stability, the 279 

critically stable droplet parameters are again captured by Eq. 1. (d) For each critically stable 280 

droplet shape, there is a unique corresponding contact angle θ. 281 

(a) (b)

r/R
1

log10 εE0
2/(γ/R) 

lo
g 1

0 R
3 /V

-0.6

-0.3

0

0.3

0.6

-0.6 -0.3 0-0.9 0.3

1

unstable

stable

i
ii

iii

z/R

00

1

2

(c)

i

V

ii

iii θ 

θ 

θ 

R

(d)

θ 
(r

ad
)

2
-0.6 -0.3 0-0.9 0.3

0

unstable

stable

i ii
π/2 

π/4 


