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We use the scattering matrix formalism to analyze photon blockade in coherently-driven CQED
systems with a weak drive. By approximating the weak coherent drive by an input single- and two-
photon Fock state, we reduce the computational complexity of the transmission and the two-photon
correlation function from exponential to polynomial in the number of emitters. This enables us to
easily analyze cavity-based systems containing ∼50 quantum emitters with modest computational
resources. Using this approach we study the coherence statistics of photon blockade while increasing
the number of emitters for resonant and detuned multi-emitter CQED systems — we find that
increasing the number of emitters worsens photon blockade in resonant systems, and improves
it in detuned systems. We also analyze the impact of inhomogeneous broadening in the emitter
frequencies on the photon blockade through this system.

Introduction. Cavity quantum electrodynamics
(CQED) is a fundamental model of light and matter
which has been experimentally implemented in a variety
of physical platforms. Atomic and solid state CQED
systems with a few two-level emitters have exhibited
a rich set of quantum phenomena in transmission
statistics, including, but not limited to, the vacuum
Rabi oscillations [1, 2], the conventional and the uncon-
ventional photon blockade [3–5], and the photon-induced
tunneling [6]. While suitable approximations can provide
understanding of the eigenstructure of multi-element
CQED systems [9, 10] obtained in experiments [11, 12],
the numerical studies of light-emission and scattering
from this system have been limited due to the expo-
nential scaling of the Hilbert space with the number of
emitters.

The scattering matrix formalism for quantum-optical
systems provides the solution to this problem. Re-
cently, a general formalism for computing this scatter-
ing matrix for an arbitrary time-independent and time-
dependent Markovian quantum-optical system was de-
veloped [13, 14], reducing its computation to that of an
effective propagator for the quantum-optical system. Use
of the scattering matrices allows relating the transmis-
sion and two-photon correlation through a system to the
single- and two-photon scattering matrix whose compu-
tation time scales as ∼ O(N3) and ∼ O(N6) respectively
in the number of emitters N .

In this letter, we use the scattering matrix formalism to
study multi-emitter CQED systems with a large number
of emitters (N ∼ 50) driven by weak continuous-wave
classical light (e.g. a laser). We show that increasing
the number of emitters does not increase the depth of
the photon blockade in a resonant multi-emitter CQED
systems with identical emitters. However, we find that
increasing the number of emitters improves photon block-
ade if the emitters are detuned from the cavity resonance.
Finally, we study the impact of inhomogenous broaden-
ing [15–21] in the emitter frequencies on photon blockade
in the multi-emitter systems.

FIG. 1. Schematic of the multi-emitter CQED system. An
optical cavity mode couples to N emitters with coupling con-
stants gi, 1 ≤ i ≤ N . The input and output coupling con-
stants are κb and κc. In addition to the cavity, the emitters
also couple to loss-channels with coupling constants γi. The
total decay rate of the cavity is given by κ = κb + κc (we
assume κb = κc = κ/2 throughout this paper).

Simulation method. A schematic of the considered sys-
tem is shown in Fig. 1 — a cavity, with annihilation oper-
ator a, is coupled to N two-level emitters, with lowering
operators σi, 1 ≤ i ≤ N . The cavity is excited through a
waveguide, with a frequency dependent annihilation op-
erator bω, and the emission from the cavity is collected
through another waveguide, with annihilation operator
cω. The emitters, in addition to coupling to the cavity
mode, also radiate into loss channels with annihilation

operators l
(i)
ω — these loss channels model the linewidths

of the emitters. The Hamiltonian for the multi-emitter
CQED system is given by:

Hsys = ωca
†a+

N∑
i=1

[
ωiσ
†
iσi + gi

(
aσ†i + σia

†)]. (1)

where ωc is the cavity resonance frequency, ωi is the tran-
sition frequency of the ith emitter and gi is the coupling
constant between the ith emitter and the cavity mode.
We study the excitation of this system with a continuous-
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wave coherent state at frequency ωL, described by an
input state:

|ψin〉 = exp[β0(b†ωL
− bωL

)] |vac〉 (2)

where β2
0 is the photon flux (number of photons per

unit time) in the coherent state. As is detailed in the
supplementary material [22], we establish the following
relationship of the transmission T (ωL) and two-photon
correlation g(2)(t1, t2;ωL) to the single-photon [Sc(·)] and
two-photon [Sc,c(·)] scattering matrices for continuous-
wave input in the limit of small input photon flux β2

0 :

T (ωL) =

∣∣∣∣ ∫ ∞
t′=−∞

Sc(t; t
′) exp(−iωLt

′)dt′
∣∣∣∣2 (3a)

g(2)(t1, t2;ωL) =
1

4T 2(ωL)
×∣∣∣∣ ∫ ∞

t′1,t
′
2=−∞

Sc,c(t1, t2; t′1, t
′
2) exp[−iωL(t′1 + t′2)]dt′1dt′2

∣∣∣∣2
(3b)

where the S matrices capture scattering of photons prop-
agating in the input-waveguide (with annihilation oper-
ator bω) to the output-waveguide (with annihilation op-
erator cω). The scattering matrices are functions only
of the system operators and external coupling constants
κb,c and γn.

The dominant cost for computing these scattering ma-
trices is that of diagonalizing the effective Hamiltonian
Heff [22]:

Heff = Hsys −
iκ

2
a†a−

N∑
n=1

iγn
2
σ†nσn (4)

where κ = κb + κc is the total decay rate for the op-
tical cavity. Since Heff conserves the total excitation
number (a†a +

∑N
n=1 σ

†
nσn), this diagonalization can

be performed separately within the excitation conserv-
ing subspaces of the full Hilbert space. When comput-
ing the single- and two-photon scattering matrices, it is
only necessary to diagonalize the effective Hamiltonian
within the single- and two-excitation subspaces the cost
of which approximately as ∼ O(N3) and ∼ O(N6) re-
spectively. We note that when the emitters are identical
(i.e. ωi = ω, γi = γ and gi = g for all i ∈ {1, 2 . . . N}),
by utilizing the Clebsh-Gordan series this diagonalization
can be mapped to the diagonalization of 3× 3 and 2× 2
complex matrices [22].

Having diagonalized Heff, the transmission T (ωL)
and equal-time two-photon correlation g(2)(0;ωL) =
g(2)(t, t;ωL) can be expressed as [22]:

T (ωL) = κbκc

∣∣∣∣ N1∑
i=1

(〈G| a |φ(1)
i 〉T)2

λ
(1)
i − ωL

∣∣∣∣2 (5a)

g(2)(0;ωL) =

∣∣∣∣ N2∑
i=1

Γi(ωL)

∣∣∣∣2 (5b)

where |G〉 is the ground state of the multi-emitter CQED
system, 〈·〉T denotes a ‘transpose’ inner product between
two states, Ni is the dimensionality of the ith excitation

subspace of the multi-emitter CQED system, (λ
(i)
j , |φ(i)

j 〉)
are the eigenvalues and eigenstates of Heff within the ith

excitation subspace and Γi(ωL), given below, can be in-
terpreted as the contribution of the ith two-excitation
eigenstate to the equal time two-photon emission:

Γi(ωL) =
κbκc
T (ωL)

(
〈G| a2 |φ(2)

i 〉T
λ

(2)
i − 2ωL

)
×

N1∑
j=1

(
〈φ(2)

i | a† |φ
(1)
j 〉T 〈φ

(1)
j | a† |G〉T

λ
(1)
j − ωL

)
(6)

These expressions for T (ωL) and g(2)(0;ωL) explicitly
show their dependence on the energy eigenvalues [∼
Re(λ

(j)
i )], linewidths [∼ Im(λ

(j)
i )] as well as the eigen-

states (|φ(i)
j 〉) of the multi-emitter CQED systems.

Results. Using a large number of identical emitters
coupling coherently to the same cavity mode is a po-
tential strategy to achieve strong coupling between the
emitters and the cavity in a situation where an individ-
ual emitter only weakly couples to the cavity mode. Fig-
ure 2(a)-(b) shows the transmissivity T (ωL) and equal-
time correlation g(2)(0;ωL) for multi-emitter CQED sys-
tems with 1–100 emitters. Consistent with the result
obtained on a direct diagonalization of Hsys, we ob-
serve that the splitting between the polaritonic peaks in
the transmissivity scales as

√
N . We also observe that

the minimum two-photon correlation g(2)(0;ωL), which
is achieved at the polaritonic frequencies, tends towards
unity with an increase in the number of emitters for both
strongly-coupled emitters [Fig. 2(a)] and weakly-coupled
emitters [Fig. 2(b)]. This trend can be easily explained
by looking closely at the ‘anharmonicity’ (δω1,2) between
the single- and two-excitation eigenenergies of the multi-
emitter CQED system:

∆ω1,2 = min
i,j

∣∣Re[2λ
(1)
i ]− Re[λ

(2)
j ]
∣∣. (7)

Figure 3(a) shows ∆ω1,2 as a function of N along with

the linewidth δω2 = Im[2λ
(2)
i ] of the most harmonic

eigenstate in the two-excitation subspace — increasing
the number of emitters makes the system’s energy levels
more equally spaced while saturating their linewidths,
thereby worsening photon blockade. It is worth noting
that with the weakly coupled emitters the value of the
min[g(2)(0;ωL)] has an initial decrease, before monoton-
ically increasing with the number of emitters consistent
with previously reported results [10]. We also observe
a pronounced ‘bunching’ peak in g(2)(0;ωL) for strongly
coupled emitters [Fig. 2(a)], near the anti-bunching dip
— this corresponds to 2ωL being resonant with the two-
excitation eigenstates. g(2)(0;ωL) at the bunching peak
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(a) (b) (c)

FIG. 2. Equal-time correlation g(2)(0;ωL) and transmissivity T (ωL) for (a) strongly coupled resonant emitters (g = 2κ, ωe = ωc),
(b) weakly coupled resonant emitters (g = 0.2κ, ωe = ωc) and (c) weakly coupled detuned emitters (g = 0.2κ, ωe − ωc = 0.8κ).

The insets show the dependence of minωL [g(2)(0;ωL)] as a function of N and the dashed lines show limN→∞ g
(2)(0;ωL) computed

using Eq. 8. Increasing the number of emitters clearly deteriorates the polaritonic photon blockade observed in the system.
For detuned systems, increasing the number of emitters enhances the interference based blockade. γ = 0.01κ is assumed in all
simulations.

(a) (b)

FIG. 3. (a) Anharmonicity ∆ω1,2 and the linewidth δω2 of the most harmonic eigenstate in the second excitation subspace
as a function of number of emitters. We have used g = 2κ and only considered those two-excitation eigenstates which have a
non-zero overlap with two photons in the cavity while computing ∆ω1,2 and δω2. (b) Amplitude and phase of the equal-time

two-photon emission (Γ±,Γ0) from the three eigenstates (|φ(2)
± 〉, |φ

(2)
0 〉) that contribute to g(2)(0;ωL) in a detuned multi-emitter

CQED system with weakly coupled emitters (g = 0.2κ, ωe − ωc = 0.8κ) at the frequency corresponding to the interference
based blockade. γ = 0.01κ is assumed in all simulations.

also tends to 1 as N →∞ due to the system eigenstates
becoming increasingly harmonic. Moreover, g(2)(0;ωL)
can be analytically evaluated in the limit of N → ∞ to
obtain [22]:

lim
N→∞

g(2)(0;ωL) =

∣∣∣∣1− g2

(ωL − λe)(2ωL − λe − λc)

∣∣∣∣2
(8)

where λe = ωe − iγ/2 and λc = ωc − iκ/2. As can be
seen from Figs. 2(a) and (b), in the limit of large number
of emitters, the multi-emitter system does not show any
blockade — photon bunching can be seen at ωL ∼ ωc as
a consequence of near zero single-photon transmission.

We next study the impact of detuning between the
emitters and the optical mode on the polaritonic pho-
ton blockade [Fig. 2(c)]. Consider the transmission line-
shape: there is a distinct Fano dip to nearly zero trans-
mission at ωL ≈ ωe where the single-photon transmis-

sion through the two single-excitation eigenstates (one
being more cavity-like and the other being more emitter-
like) exactly cancels. Towards the right of this Fano
dip, the light antibunches (g(2)(0;ωL) < 1) owing to the
standard polaritonic photon blockade of a detuned sys-
tem [27, 28]. Due to the multi-emitter system becoming
more harmonic with an increase in the number of emit-
ters [Fig. 3(a)], this blockade effect degrades similar to
that in the resonant CQED system. Photon bunching
(g(2)(0;ωL) > 1) is observed exactly at the Fano dip
due to the single-photon transmission becoming nearly
zero — within the framework of scattering theory, this
is equivalent to the contribution of the unconnected (lin-
ear or frequency-preserving) part of the scattering matrix
being small in the output state, and the scattering hap-
pening almost entirely from the connected (nonlinear or
frequency-mixing) part of the two-photon S matrix [29].

Slightly left of the Fano dip, we again observe pho-
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(a)

(b)

FIG. 4. Impact of inhomogeneous broadening on the photon blockade in multi-emitter CQED systems for (a) the emitters,
on an average, being resonant with the cavity. (b) emitters that are, on an average, detuned from the cavity resonance by

〈ωe〉 − ωc = 0.8κ = 2π · 20 GHz. For both cases, we show a typical lineshape g(2)(0;ωL), and the statistics of the frequencies

ωB and the g(2)(0;ωB) values for the polaritonic and subradiant photon blockade (Note that the y-axis in the histogram is the
unnormalized frequency of occurence of the sample statistic). Parameter values ∆ = 25 GHz, κ = 2π ·25 GHz, g = 0.2κ = 2π ·5
GHz and γ = 2π · 0.3 GHz are assumed in all simulations.

ton antibunching — moreover, unlike polaritonic block-
ade, the blockade depth increases with increasing N .
This blockade occurs due to a destructive interference
between the two-photon emissions from different two-
excitation eigenstates. More insight into this phenomena
can be obtained by closely studying the two-excitation
eigenstates as well as their contribution to two-photon
emission. Note from Eqs. 5b and 6 that only the two-
excitation eigenstates which have non-zero overlap with

two-photons in the cavity (i.e. 〈G| a2 |φ(2)
i 〉 6= 0) have a

non-zero contribution to g(2)(0). When all the emitters
are identical, there are three such two-excitation eigen-

states — |φ(2)
± 〉 which have a probability of 1/4 of having

2 photons in the cavity in the limit of N →∞, and |φ(2)
0 〉

which when N →∞ has a probability of 1/2 of having 2
photons in the cavity [22]. Figure 3(b)-(c) shows the am-
plitude and phase of the contribution of these three eigen-
states to equal-time two-photon emission (i.e. Γi(ωL) de-
fined by Eq. 6) at the blockade frequency — it can eas-
ily be seen that individually the eigenstates have signif-
icant two-photon emission, with the amplitude of emis-
sion being proportional to the probability of the eigen-
state having 2 photons in the cavity mode. However,

the two-photon emission from |φ(2)
0 〉 is out of phase from

the emission of |φ(2)
± 〉, with the phase difference between

them approaching π as the number of emitters increases.

This explains the interference based character of this
blockade, as well as its dependence on N . The limit
of g(2)(0;ωL) as N → ∞, given by Eq. 8 and plotted in
Fig. 2(c), also shows a pronounced interference based an-
tibunching, along with a disappearance of the polaritonic
blockade. Moreover, the interference based blockade can
be made deeper by increasing the detuning between the
emitters and the cavity mode [22]. We also note that
the transmission T (ωL) at the interference based photon
blockade is small — it scales in inverse proportion to N2

[22] — there thus exists a tradeoff between the purity of
the single-photon state emitted by these systems and the
brightness of the single-photon state.

While the previous analysis was primarily done under
the assumption of identical emitters, emitters in practi-
cal systems are inhomogenously broadened i.e. they have
slightly different transition frequencies. For solid-state
color centers, the distribution of the emitter frequencies
can be modelled as a normal distribution with standard
deviation ∆ . 20 GHz [18, 20, 21]. Results of a Monte–
Carlo analysis on the transmission and equal-time two-
photon correlation through the multi-emitter system are
shown in Fig. 4(a) for resonant emitters and Fig. 4(b)
for detuned emitters. We observe an emergence of a large
number of very narrow linewidth dips in g(2)(0;ωL) which
correspond to the subradiant photon blockade that has
been studied in CQED systems with two non-identical
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emitters [8]. The occurrence of these dips is due to sub-
radiant states. These highly entangled states that did
not overlap with the cavity mode when the emitters were
identical, now do overlap with the cavity mode and hence
contribute to light emission from the system. These
blockades reach very low g(2)(0;ωL) values even for emit-
ters that individually couple to the cavity only weakly.
Moreover, for the resonant system, the distribution of
the frequencies of the blockade dips (ωB) reveal that the
spread in the frequencies of the subradiant photon block-
ade is of the order of the inhomogeneous broadening in
the emitter frequencies, whereas the frequencies of po-
laritonic photon blockade are significantly more robust
to inhomogeneous broadening in the emitter frequencies
albeit with a much larger value of g(2)(0;ωB). A simi-
lar trend is observed in the detuned system [Fig. 4(b)],
with the polaritonic dip being robust to inhomogeneous
broadening, and the interference-based dips (identified as
the first dip which smoothly plateaus to 1 as |ωL| → ∞)
are much more sensitive to the inhomogeneous broaden-
ing while reaching very low g(2)(0;ωB) values (∼ 0−0.1)
similar to the identical-emitter system.

Finally, our study has uncovered two fundamental
tradeoffs in multi-emitter CQED systems which can help
inform future experiments and their suitability for quan-
tum information processing applications. Firstly, for a
given emitter-cavity coupling strength and cavity decay
rate, there exists a tradeoff between the achievable trans-
mission and the depth of photon blockade [measured
as g(2)(0;ωB)]. Increasing either the cavity-emitter de-
tuning or the number of emitters increases the depth
of photon blockade, but also reduces transmission at
the blockade frequency. Secondly, a tradeoff exists be-
tween the depth of achievable blockade and robustness
of the blockade frequency to inhomogeneous broaden-
ing — polaritonic photon blockade, which typically has
g(2)(0;ωB) ∼ 1, is robust to inhomogenous broaden-
ing, while detuning the emitters from the cavity reso-
nance can allow the multi-emitter CQED system to ex-
hibit the interference-based photon blockade with signifi-
cantly lower g(2)(0;ωL). However, relying on destructive
interference of two-photon emissions from various two-
excitation eigenstates makes the blockade sensitive to
the emitter frequencies. Moreover, the subradiant dips
in the photon blockade also provide very low g(2)(0;ωB),
but the blockade frequencies ωB are difficult to engineer
without precise control over the emitter frequencies.
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