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We consider a many-body localized system coupled globally to a central d-level system. Under
an appropriate scaling of d and L, we find evidence that the localized phase survives. We argue
for two possible thermalizing phases, depending on whether the qudit becomes fully ergodic. This
system provides one of the first examples of many-body localization in the presence of long-range
(non-confining) interactions.

A fundamental shift in our understanding of non-
equilibrium quantum systems has occurred via the dis-
covery of many-body localization (MBL), where suffi-
ciently strong disorder induces stable localization [1–4].
MBL generalizes the notion of Anderson localization to
the presence of interactions and is widely believed to be
the only generic method for breaking the eigenstate ther-
malization hypothesis (ETH [5–7]) in isolated quantum
systems. Since its inception, MBL has been shown nu-
merically for a variety of models [2, 3], mathematically
proven to exist under minimal assumptions [8], and been
generalized to situations such as time periodic (Floquet)
drive [9, 10], where MBL is particularly important to
avoid heating to a featureless infinite temperature state.

MBL is commonly considered for the case of local in-
teractions, with the exception of [11], where long-range
confining interactions behave short-ranged with regards
to the relevant degrees of freedom. Absent confine-
ment, long-range interactions generically entangle spa-
tially separated degrees of freedom, destroying the MBL
phase. Perhaps the simplest example of this is the central
spin-1/2 model, where it was found that a single glob-
ally coupled impurity immediately destroys localization
in an infinite spin chain for arbitrarily weak couplings
[12, 13][14]. One may suspect that this delocalization is
generic for non-confining interactions, as a single spin-
1/2 represents in some sense the minimal quantum bath
providing thermalization.

In this paper, we show that this intuition is incorrect.
Specifically, inspired by quantizing the drive degrees of
freedom in Floquet MBL, we show that an appropriate
limit of a d-level system (“qudit”) coupled to a disordered
spin chain may display an MBL-ETH transition at fi-
nite coupling. We argue that this phase transition sur-
vives the thermodynamic limit under the condition that
d>∼
√
L asymptotically, where L is the length of the spin

chain. The resulting phase diagram has many surpris-
ing features, such as decreased thermalization for larger
d and the potential for an inverted mobility edge.

Model— As a starting point, we consider a model of
MBL in the presence of global periodic drive, adapted

from Zhang et al. [15]:
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where τ are Pauli matrices and Gi are random Gaus-
sian variables of zero mean and unit variance describing
on-site disorder. When the drive frequency is high, the
system is effectively described by the average Hamilto-
nian 1

2 (Hz+Hx), which exhibits an MBL-ETH transition.
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FIG. 1. Proposed infinite temperature phase diagram for the
central qudit model upon taking L → ∞ with d/

√
L fixed.

In addition to MBL and ETH phases of the spin chain, the
dotted line indicates the crossover from fully thermal qudit to
athermal qudit (“Floquet ETH”). The behavior of the phase
boundary near d/

√
L = 0 is unclear; a possible Γc ∼ L−1

scaling [12] is indicated by the dashed line. Two finite size
estimators of the critical Γ – defined near Eq. 2 and in Fig. 2
– are plotted. The value r = 0.46 is taken to be halfway
between the thermal (r = 0.53) and non-thermal (r = 0.39)
values [2].
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FIG. 2. Half chain mutual information variance σ2
I for various qudit sizes. The leftward drift of the peaks with system size L

is seen to slow down with increasing d.

The coupling Γ controls the strength of disorder as well as
the degree of noncommutativity between the zeroth and
first harmonics of H. We take h = 0.809, g = 0.9045,
and Ω = 3.927, for which we numerically verify that an
MBL-ETH transition is present at Γc ≈ 0.33.

Interesting insight may be obtained by examining this
model in the Floquet extended zone picture [16]. Writ-
ing the wave function in Fourier harmonics, |ψ(t)〉 =∑∞

n=−∞ |ψ(n)(t)〉einΩt, |ψ(n)〉 may be considered as the
wave function dressed by n photons. This wave function
evolves under the extended zone Hamiltonian:

HEZ =
∑
n

(
1

2
H+ + Ωn

)
⊗ |n〉〈n|

+
1

4
H− ⊗

(∑
n

|n+ 1〉〈n|+ h.c.

)
, (1)

where H± = Hz ± Hx are the zeroth (+) and first (−)
Fourier modes of H. We introduce an extended Hilbert
space |n〉 corresponding to photon occupation numbers.

In numerically solving such an extended zone Hamil-
tonian, one often truncates the photon Hilbert space, for
instance restricting n = −Nc,−Nc + 1, . . . , Nc. In order
to obtain the proper Floquet result, one must extrapo-
late Nc →∞. If instead we maintain a finite truncation,
the photon degrees of freedom form a d-level system – a
“qudit” – with d = 2Nc + 1. In the d → ∞ limit, we re-
cover Floquet physics, for which an MBL-ETH transition
is expected in this model. Keeping d finite, as in the case
of a qubit (d = 2), Ponte et al. have argued in a similar
model that ETH is expected for all finite couplings in the
thermodynamic limit [12]. The remainder of this paper
will be devoted to understanding the crossover between
these limits, thereby uncovering the physics of MBL in
the presence of a central qudit. Note that alternative
choices of truncation would allow one to instead think
of the degree of freedom as a central spin-S or photon
with finite occupation, a picture relevant to cavity QED.
These other truncations are discussed in the Supplement
Material [17].
Numerical results— We investigate the behavior of

this model up to L = 14 spins and d = 11 using the

shift-invert method [18]. By targeting the ten states with
energy closest to 0, we effectively work in the infinite tem-
perature limit. We see that these ten states describe the
same energy density by observing that there are no small
scale structures in the disorder-averaged many-body den-
sity of states near zero energy [19, 20]. We compare these
results to the full Floquet dynamics (d =∞) by approx-
imating the exact dynamics over one period with ≥ 16
time steps.

In our model, thermalization of the localized spins
can occur through direct spin-spin interactions, qudit-
mediated interactions, or some combination thereof. To
distinguish entanglement between the spins from entan-
glement with the qudit, we consider the mutual informa-
tion (MI) between two halves of the spin chain (see Fig.
1 for definition of A and B):

I(L/2) ≡ I(A,B) = S(ρA) + S(ρB)− S(ρAB). (2)

By subtracting entanglement with the qudit, S(ρAB) =
Squdit, we find that I captures the bipartite correlations
between A and B more faithfully than S(ρA).

We calculate mutual information and qudit entangle-
ment entropy for each of the eigenstates and 200− 6000
realizations of disorder, as well as the level statistics ra-
tio r [2]. Let us begin by discussing I(L/2). For large
d = 11 approaching the Floquet limit, it increases from
a nearly system size independent area law in the MBL
phase at small Γ to a thermal volume law, approaching

the Page value SPage =
L

2
− 1

2 log 2
[21], for large Γ (see

Supplement [17]). It has been found elsewhere that shot-
to-shot fluctuations of the entanglement entropy are a
useful detector of the MBL-ETH phase transition, peak-
ing sharply near the transition [22, 23]. Here we obtain
the variance of the MI, σ2

I , due to intersample variations
between disorder realizations and intrasample variations
between eigenstates (Fig. 2). Treating the peak val-
ues Γpk(L) as a finite size approximation of the critical
point, we see that for large d, the peak shifts only weakly
with L. This is consistent with the Floquet MBL-ETH
phase transition at finite Γ in taking first d → ∞, then
L → ∞. By contrast, at the smallest value of d = 2,
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FIG. 3. Entanglement entropy Squdit ≡ S(ρQ) = S(ρAB) between the qudit and the spin chain. The dashed line corresponds
to the Page value, log2 d− d

(
2L+1 log 2

)−1 ≈ log2 d. The insets show the variance of Squdit.

the peak shifts sharply with L, consistent with the ex-
pected absence of an MBL-ETH phase transition in the
thermodynamic limit. The behavior for d ∼ 5 is interme-
diate to these two limits, and its crossover behavior will
be addressed in more detail later.

The qudit entanglement entropy Squdit and its vari-
ance, σ2

S,qudit, are shown in Fig. 3, while r is shown
in the Supplement [17]. One striking difference between
Squdit and I(L/2) is immediately apparent – for large
d, the qudit entropy does not reach its maximal value,
and thus the qudit does not thermalize. Despite the lack
of thermalization in the qudit, the level statistics ratio
still saturates the Gaussian orthogonal ensemble value of
r ≈ 0.53 for Γ > Γc in the large d limit. On the other
hand, for d = 2, the qudit entropy and its fluctuations
closely track I(L/2), suggesting that thermalization of
the spin chain is mediated by the central qudit. These
numerics together suggest that thermalization of the qu-
dit and the spin chain do not always go hand in hand,
confirming the expectation that the limits d → ∞ and
L → ∞ do not commute. We now address how these
limits may be taken to obtain the phase diagram shown
in Fig. 1.

The appropriate scaling of d vs. L can be argued by
first decoupling them, i.e., taking Γ = 0. Then eigen-
states of the full problem become direct products of
eigenstates of Hz with those of the qudit. The qudit
states behave like non-interacting charged particles in an
external electric field with nearest neighbor hopping pro-
portional to the many-body energy of the Hz eigenstate.
In the Floquet limit, d→∞, the qudit will be Wannier-
Stark localized with a characteristic spread given by the
ratio of the hopping strength 〈Hz〉 to the potential tilt
Ω, for which the variance of the qudit occupation is given
by ∆2

Q ≡ 〈n2〉− 〈n〉2 = 1
2 〈Hz〉2/Ω2 [17]. The many body

spectrum has characteristic width σ〈Hz〉 ∼
√
L, hence

averaging over eigenstates gives ∆2
Q ∼ L.

This scaling of ∆2
Q is further argued to be robust for

small Γ in the Supplement [17]. However, numerically
we find that this result holds nonperturbatively as well,

giving ∆2
Q ∼ L for Γ throughout the phase diagram (Fig.

4). Therefore, we argue that the relevant ratio controlling
thermalization is d/

√
L, as in Fig. 1. For d �

√
L, the

spin chain is insufficient to act as a bath for the qudit,
and thus no thermalization of the qudit occurs. For d�√
L, the spin chain can thermalize the qudit and vice

versa. Taking the limit L → ∞ with d/
√
L small but

finite, our data is unable to confirm whether the qudit
fully thermalizes, or rather whether the qudit entropy
gradually crosses from athermal to thermal as we take
d/
√
L→ 0; we leave this topic for future study.

Having identified d/
√
L as the relevant scale for un-

derstanding the qudit’s role in thermalization, we may
now plot the finite size approximants to Γc (Fig. 1).
We see that once L is reasonably “large” (L>∼ 10) the fi-
nite size Γc from level statistics and MI variance seem
to approach a single curve, which we postulate will be-
come a sharp MBL-ETH phase transition in the thermo-
dynamic limit. For d/

√
L<∼ 1, the MBL-ETH transition

indicated by these two measures is consistent with that
obtained from the qudit entanglement entropy, while go-
ing to d/

√
L>∼ 1, this is no longer true, consistent with

a crossover from qudit-mediated thermalization [17]. Fi-
nally, we note that the prediction of Γc ∼ 1/L at ar-
bitrary finite d [12, 13] maps in our phase diagram to
Γc ∼ d2/L for d/

√
L� 1. We are unable to obtain data

for transitions in this limit, so leave clarification of the
bottom left corner of the phase diagram for future work.

Discussion— Our data suggest that three distinct
phases exist for the disordered spin chain coupled to a
central qudit: (1) Both spin chain and qudit are ather-
mal (MBL), (2) both the spin chain and the qudit are
thermal (full ETH), and (3) the spin chain is thermal
but the qudit is athermal. We refer to this last phase
as Floquet ETH because it is necessarily obtained in the
Floquet limit, d/

√
L → ∞. By contrast, for full ETH

to occur, the spin chain must act as a bath for the qu-
dit states and vice versa. In the thermodynamic limit,
this should manifest as observables for both the spins
and the qudit exhibiting criticality at the same value of
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FIG. 4. Variance of the qudit wavefunction versus size of the
spin chain, for Γ in both MBL and ETH phases and near
criticality. The red line is given by 0.02L.

Γ. We cannot currently probe this effect, given the small
region of L and d space accessible. However, drifts in Γpk

obtained from Squdit (Fig. 3, inset) and I(L/2) (Fig. 2)
appear to be consistent with a Γc = 0 transition as found
in earlier works [12, 13]. The full ETH phase is certainly
obtained for d/

√
L = 0, e.g., by taking L → ∞ while

keeping d finite. While we cannot rule out the possibil-
ity that this phase extends to nonzero d/

√
L, implying a

phase transition between the thermal full ETH and Flo-
quet ETH phases, we expect that Floquet ETH will be
immediately obtained as d/

√
L is increased from zero.

Most surprising is the persistence of MBL at finite
d/
√
L. Integrating out the central qudit, we may think of

this as MBL in the presence of infinite range interactions.
Similar MBL phases have been proposed in the presence
of long-range confining interactions by Nandkishore and
Sondhi [11], but this work represents the first numeri-
cal example of such long-range-interacting MBL to our
knowledge. A natural expectation is that thermalization
would be easier for larger central qudit size, as larger
central qudits have more pathways for the qudit to flip
and thus mediate long-range interactions. However, our
data suggests the opposite – larger d leads more read-
ily to MBL. In the Supplement, we show how the qudit
may be “integrated out” in the high frequency limit and
recover the d/

√
L scaling using this method. Intuitively,

the picture that emerges is that, at large d, the spin chain
Hamiltonian becomes independent of the qudit occupa-
tion due to translation invariance in qudit occupation
space, and thus the qudit [24] is no longer able to medi-
ate long-range interactions. Finally, we note that apply-
ing the same procedure to models with Floquet-induced
localization [25, 26] would lead to localization that is en-
couraged rather than discouraged by the presence of the
central qudit.

We note one further non-trivial corollary to this phase
diagram. If we treat d as a proxy for the photon num-
ber in a photonic regularization of the Floquet problem,
then smaller d would correspond to smaller photon num-

ber and, thus, lower many-body energies. Moving to the
left in Fig. 1 is then loosely equivalent to decreasing
energy. If we take some value of Γ below the Floquet
critical point, e.g., Γ = 0.2, this implies that the system
goes from many-body localized at infinite temperature
to ergodic at lower temperature: an inverted many-body
mobility edge. This analogy is inexact, but numerically
we may target lower energy densities at fixed d to deter-
mine whether indeed this unexpected inversion holds.

Experimentally, central qudit systems are realized in
a variety of settings, such as quantum dots [27, 28] and
defect centers [29]. Localization of the spin bath there is
less obvious, as the spin-spin interactions are commonly
dipolar. Other promising avenues for realizing localiza-
tion in the presence of a central mode include supercon-
ducting qubits coupled in geometry similar to Fig. 1 [30]
or spin chains consisting of ultracold atoms globally cou-
pled to a cavity [31–34]. In the latter architecture, the
cavity photon number plays the role of the qudit size, as
discussed more extensively in the Supplement [17].

In conclusion, we have mapped out the phase diagram
of a disordered spin chain interacting with a central qu-
dit. We found that the size of the central qudit plays an
important role, with the ratio d/

√
L appearing to control

the crossover from Floquet-like physics at d/
√
L � 1 to

central qudit-like physics at d/
√
L� 1. We expect simi-

lar behavior to hold for other models of Floquet MBL, as
well as other methods for quantizing the Floquet drive.
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