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In equilibrium the interface potential that describes the interaction between two AB interfaces in
a binary blend of A and B homopolymers is attractive at all distances, resulting in coarsening of the
blend morphology even in the absence of interface curvature. We demonstrate that the dissipative
assembly in response to a time-periodic variation of the blend incompatibility qualitatively alters this
behavior, i.e., for suitable parameters the interface potential exhibits a periodic spatial modulation
and AB interfaces adopt a well-defined distance. We explore for which oscillation periods and
amplitudes an interface repulsion occurs and demonstrate that we can control the preferred interface
distance over a wide range by varying the oscillation period. Using particle-based simulations we
explicitly demonstrate that this dissipative assembly of a homopolymer blend results in a lamellar
structure with multiple planar interfaces in a thin film geometry.

Dissipative assembly, i.e., the non-equilibrium struc-
ture formation due to energy input and concomitant dis-
sipation, is an important mechanisms of structure for-
mation in biological and synthetic systems [1–3]. Re-
cently there are efforts to mimic particular aspects of this
driven, non-equilibrium assembly in colloidal systems [4–
8], and there is an urgent need to understand the under-
lying design mechanisms [1, 4]. Here we provide an an-
alytical strategy for predicting the dissipative assembly
of interfaces and demonstrate that the non-equilibrium
structure formation results in a wetting behavior that
qualitatively differs from the equilibrium behavior, i.e.,
the interface interactions switch from attractive to repul-
sive, giving rise to the dissipative assembly into lamellar
morphologies.

The interaction between interfaces is important for
wetting and coarsening dynamics [9–13]. The free en-
ergy of two planar interfaces per unit area depends on
their distance, h, and is given by the interface potential,
g(h) [14]. In equilibrium, the interaction between two
interfaces in a binary blend is attractive [15], resulting in
coarsening even in the absence of interface curvature or
collision of interfaces due to thermal motion. In this let-
ter we demonstrate that an oscillatory repulsion between
the species qualitatively changes the interface potential,
resulting in an interface repulsion and giving rise to a
metastable lamellar morphology in a binary blend.

The universal properties of interfaces between the co-
existing phases of a binary blend can be described by the
Ginzburg-Landau square-gradient theory [9, 16]:
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where m denotes the order parameter that distinguishes
between the two coexisting phases, and N is a normaliza-
tion that sets the scale of the free-energy density in units
of the thermal energy, kBT . The coefficient α parame-
terizes the strength of the binary interaction between the
constituents of the blend. It is a temperature-like variable
that controls the phase behavior, and α = 0 corresponds

to the critical point. The square-gradient term penalizes
rapid spatial variations of the order parameter and results
in a finite width of the interface. The interface profile
m(x) =

√
α tanh(x/w) with width w =

√
2/α minimizes

the free-energy functional, F [m], subjected to the bound-
ary conditions m(x→ ±∞) = ±

√
α [9]. The interaction

between two interfaces is attractive at all distances and
decays exponentially with the distance, h. Within Cahn-
Hilliard dynamics
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this yields to an attractive dynamics of interface distance,
hdh

dt ∼ − exp(−h/w) for α = 1 [15].
In this letter we consider the case that the in-

compatibility, α, is a time-periodic function α ={
1 + ε for 0 < t ≤ T/2
1− ε for T/2 < t ≤ T with period, T , and amplitude,

ε, of the oscillation. Previous seminal work by Szleifer
and co-workers [4, 5] for particle systems demonstrated
that oscillations of the interparticle potential with a pe-
riod that is fast compared to the diffusion timescale of the
particles result in an effective interaction that is the time
average of the oscillatory potential. The (slow) toggling
of interactions also beneficially impacts the crystalliza-
tion kinetics in colloidal systems [6–8].

In our continuum model, we demonstrate by numer-
ical simulation of the Cahn-Hilliard dynamics, approxi-
mate analytical calculations, and simulation of a particle-
based model of a symmetric homopolymer blend in a thin
film, that an oscillatory incompatibility can qualitatively
change the interface potential from attractive to repul-
sive – a non-equilibrium characteristic that cannot be
observed for any averaged (time-independent) value of α.
The continued input of energy in this time-periodic non-
equilibrium state results in a preferred distance between
interfaces and a dissipative assembly of a binary blend
into a metastable lamellar configuration, whose lamellar
spacing can be controlled by the period, T , of the oscil-
lation of the strength of binary interactions.



2

-L/2 -h(0) 0 h(0)=16 L/2=50
x

-1

0

1
m

m(x,t)
equilibrium
interface
sharp-interface
approximation

a)

103 104 105 106

Λt

0

2

4

6

h(
t)/

w

b)

Figure 1: a) Initial interface configuration with an
interface distance, h(0) = 16 ≈ 11.3w, comparison with
the equilibrium interface profile for α ≡ 1 and the
sharp-interface approximation. b) Time evolution
towards equilibrium for a constant incompatibility,
α ≡ 1, i.e., ε = 0: interfaces attract each other, their
distance h(t) decreases in time, and they annihilate at
h(t∗) = 0. The concomitant time scale, t∗, increases
exponentially with the initial distance, h(0).

First, we study the Cahn-Hilliard dynamics of the
Ginzburg-Landau square-gradient functional via a semi-
implicit spectral technique, setting Λ = 1. We consider a
one-dimensional system of size L = 100. Initially, three
interfaces are symmetrically positioned at −h(0), 0, and
h(0) as shown in Figure 1a. Panel b shows the time
evolution of the distance, h(t), for constant α ≡ 1, i.e.,
ε = 0. As expected [15] the interfaces attract each other
and annihilate at a time ln Λt∗ ∼ h(0) for h(0)� 1.

The behavior for oscillating α(t) with amplitude ε =
0.5 and period ΛT = 5 is presented in Figure 2a. If the
interfaces are initially closely spaced, h(0) . 6w, they
also attract each other and annihilate. For larger initial
distances, however, interfaces do not attract. Instead,
the interfaces converge toward a well defined, finite sep-
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Figure 2: a) Time evolution of the interface distance,
h(t), for different starting conditions, h(0), for an
oscillatory incompatibility with amplitude ε = 0.5 and
period ΛT = 5. b) h(∞) as a function of the
square-root of the oscillation period, T for various
amplitudes, ε. The inset illustrates further fix-point
distances for ε = 0.5

aration distance, h(∞) ≈ 9.6w.

Figure 2b shows how the fix-point distance, h(∞), de-
pends on the amplitude, ε, and period, ΛT of the oscilla-
tion. For very fast oscillations, T < T ∗, interfaces attract
each other and annihilate, i.e., there is no non-trivial fix-
point distance, h(∞) > 0; in accord with the prediction of
Szleifer and co-workers the driven system behaves similar
to an equilibrium system with time-averaged interactions
[4, 5]. For slower oscillations, however, there emerges a
preferred distance, h(∞), between the interfaces, and it
increases with the period of the oscillations of incompati-
bility. The amplitude of the oscillations, ε, slightly shifts
the threshold period, T ∗, to smaller values but has only a
minor influence on h(∞) for larger periods. The inset of
Figure 2b illustrates that there exist multiple preferred
distances for a fixed oscillation period T ; in the following
we focus on the smallest non-trivial h(∞), observed in
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Figure 3: Harmonic analysis of the profile after the
fix-point has been approached for ε = 0.5 and ΛT = 5.
The upper-panel presents the period-averaged profile,
m0(x) = limt→∞ m̄(x, t), whereas the lower panels show
the in-phase and out-of-phase oscillations. Crosses
correspond to the results of the numerical Cahn-Hilliard
dynamics whereas the solid lines are the solution of
Equation 4.

the numerical Cahn-Hilliard dynamics.
To analyze these findings, we decompose the time-

dependent order-parameter profile, m(x, t), in the form

m(x, t) ≈ m0(x) + ε
[
m1(x)eiωΛt + c.c.

]
with ω =

2π

ΛT
(3)

after the fix-point distance has been approached. Higher
harmonics are ignored. m0 is the time-averaged profile
for t → ∞, and m′ = −2ε=(m1) and m′′ = 2ε<(m1)
denote the in-phase and out-of-phase oscillations, respec-
tively. Figure 3 shows that m0 closely resembles the equi-
librium profile with the time-averaged ᾱ = 1, whereas the
in-phase and out-of-phase contributions exhibit an addi-
tional spatial structure that dictates h(∞).

To make progress, we insert this harmonic ansatz (3)
into the kinetic equation (2), approximate α(t) ≈ 1 +
4ε
π sinωΛt+ · · · , and obtain to leading orders in multiples
of the frequency ω

0 = −m0 +m3
0 −∇2m0 + ε2

[
4

π
=(m1) + 6m0|m2

1|
]

iωm1 = ∇2

(
2i

π
m0 + (3m2

0 − 1)m1 −∇2m1

)
(4)

where we have twice integrated the first equation with
respect to x, using zero-flux boundary conditions and
m(−x) = −m(x). The numerical solution of these equa-
tions is also shown in Figure 3 as lines, indicating excel-
lent agreement between our ansatz (3) and the long-time,
numerical solution of the Cahn-Hilliard dynamics.

In Figure 2 we observe that the convergence of the
interface distance, h(t) → h(∞), is much slower than

an oscillation period, T . We exploit this time-scale
separation by assuming that the profile, m̄(x, t) ≡
1
T

∫ t+T
t

dt′ m(x, t′), averaged over one period is dictated
by the slow dynamics of h(t), whereas the oscillatory part
of the profile rapidly adjusts to m̄(x, t). Thus, we can
use Equation 4 with m0 replaced by m̄ to obtain m1 as
a functional of m̄.

Inserting this functional m1[m̄] into the Cahn-Hilliard
equation (2), we obtain an approximation for the slow
dynamics of m̄(x, t)

∂m̄

∂t
= ∇ Λ

kBTN
∇
(
µ̄+ ε2µ2

)
(5)

with
µ̄

kBTN
=

1

kBTN
δF̄
δm̄

= −m̄+ m̄3 −∇2m̄ (6)

µ2

kBTN
=

4

π
=(m1[m̄]) + 6m̄|m1[m̄]|2 (7)

where F̄ is the original Ginzburg-Landau free-energy
functional (1) with the time-averaged incompatibility
ᾱ = 1.

In the Supplementary Information (SI) we show that
we can approximate the additional term as the derivative
of a Lyapunov functional, µ2 ≈ δL2

δm̄ , with

L2

kBTN
= −1

2

∫
dxdy ∇m̄(x)K(x− y)∇m̄(y) . (8)

Thus, the time evolution of the slow period-averaged pro-
file, m̄(x, t), approximately follows a Cahn-Hilliard dy-
namics with the effective free-energy functional Feff [m̄] =
F̄ [m̄] + ε2L2[m̄]. In particular, fix-points of the oscilla-
tory dynamics correspond to extrema of Feff [m̄]. Using a
sharp-interface approximation for m̄(x, t), we obtain (see
SI)

Feff(h) = Feff [m̄] = 2g(h)− g(2h) (9)

with g(h) = 4kBTN ε2K(|h|) + const (10)

The kernel, K, in Equation 8 is the sum of two damped,
spatially periodic modulations (see SI)

K(h) = <
(
c+e
−λ+|h| + c−e

−λ−|h|
)

with (11)

λ2
± = 1±

√
1− iω and c± =

2

π2λ±(1− λ2
±)

(12)

For slow oscillations, ω � 1, we obtain λ+ ≈ 2 and
λ− ≈

√
iω/2. Since 1/=(λ−) sets the characteristic

length scale of the spatial modulation of K, this approx-
imation suggest that the fix-point distance scales like
h(∞) ∼ ω−1/2 ∼

√
ΛT , in qualitative agreement with

the numerical data in Figure 2. Additional information
about the energy dissipation is provided in the SI.

Lastly, we illustrate the predictions of the Ginzburg-
Landau model by particle-based simulations of a symmet-
ric binary polymer blend. Binary polymer blends are well
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described by the Ginzburg-Landau free-energy functional
[16–18]. Importantly, the parameter α of the Ginzburg-
Landau model is related to the distance, χN − 2, to the
critical point of demixing, where N denotes the number
of segments per polymer and χ the Flory-Huggins param-
eter. Thus, minor changes in the pairwise interactions, χ,
between segments give rise to pronounced changes in the
phase diagram. This sensitivity of the phase behavior of
a polymer blend stems from the small translational en-
tropy of the macromolecules and has also been exploited
previously in the context of active polymer systems [19].
Moreover, recent experiments by Kriisa and Roth [20]
have realized periodic jumps from the one-phase region
of the phase diagram into the miscibility gap in polymer
blends by subjecting a blend to an oscillating electric
field. Additionally, the dynamics of polymers is slow in
comparison to that of mixtures of low-molecular weight
components and the predicted repulsion between inter-
faces occurs for moderate and slow oscillations. Thus
binary polymer blends are a promising model system to
validate our predictions.

The simulations use a soft, coarse-grained model [21]
in conjunction with the single-chain-in-mean-field algo-
rithm [22] implemented in the SOMA program [23]. The
system of geometry 12 × 2 × 2Re0

3, where Re0 denotes
the molecules’ unperturbed end-to-end distance, is com-
prised of 61 440 polymers of N = 16 segments. There
are two hard walls at x = 0 and 12Re0; one boundary
attracts the A component of the blend whereas the other
wall prefers the B component. The incompatibility tog-
gles between χN = 4 ± 4 with a period of T = 800
MC-steps [30]. Since we expect that the contribution of
the oscillation to the interface potential increases like the
square of the oscillation amplitude, we use a large varia-
tion of χN . The period, T , roughly corresponds to 0.42
the time a polymer diffuses a distance Re0 using Smart
MC moves [24] or approximately 10 times the time τw a
polymer diffuses the intrinsic width, wSSL ≡ Re0√

6χN
[25]

of the interface at χN = 4. Further details about model
and simulation technique are deferred to the SI, which
includes Refs. [26, 27].

Figure 4 shows the time evolution of the distance, h(t),
for the oscillating χN -parameter and compares the result
to that of the equilibrium system with the time-averaged
incompatibility χN = 4. In the latter, equilibrium case,
the interfaces approach each other and two interfaces an-
nihilate after around 3 × 107 MC-steps or 4 × 105τw.
In equilibrium there remains only a single interface that
fluctuates around the middle of the film (soft-mode phase
[13, 28, 29]). In the driven system, where the incom-
patibility oscillates, there remain three interfaces in the
system, and their mutual distances fluctuate around the
preferred value, h(∞) ≈ 3Re0 ≈ 15wSSL in the simula-
tion that are extended to more than 6× 108 MC-steps or
750 000 oscillation periods, T . The spacing of this lamel-
lar structure of homopolymers, obtained by dissipative
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Figure 4: h(t) as observed by particle-based simulations
for constant and oscillating incompatibility, χN = 4 and

χN = 4± 4, respectively. h(t) = h1(t)+h2(2)
2 is the

average of the two interface distances present in the
system. Lengths are measured in units of the
strong-segregation approximation of the interface width,
wSSL = Re0/

√
6χN ≈ 0.2Re0. Times are measured in

units of tw = w2
SSL/D, where D denotes the

self-diffusion coefficient in the disordered phase. The
inset presents the profile, m0(r), of the particle-based
simulation averaged over the last 100T .

assembly, qualitatively agrees with the predictions of the
Ginzburg-Landau model in Figure 2.

In summary we have analytically shown that tempo-
ral oscillations of the incompatibility between the species
of a blend can qualitatively alter the interface potential
from attractive to repulsive. The non-equilibrium phe-
nomena occurs for moderate and slow oscillation periods,
T , compared to the time the particles need to diffuse a
distance comparable to the interfacial width. This dissi-
pative assembly gives rise to preferred distances, h(∞),
between planar interfaces, and this characteristic spacing
of the lamellar morphology of the blend increases with
the oscillation period like h(∞) ∼

√
ΛT for large ΛT ,

i.e., by varying the periodicity we can tailor the interface
spacing without altering the molecular architecture or in-
teractions. Whereas the preferred distances, h(∞), are
rather insensitive to the amplitude of the oscillations, we
expect that the strength of the repulsion or the curvature
of the interface potential around the preferred distance
depends quadratically on the oscillation amplitude. Our
particle-based simulations suggest that thin films of poly-
mer blends are ideal model systems to validate our pre-
dictions because of the sensitivity of the phase behavior
to minuscule changes of segmental interactions and the
large time and length scales of polymer materials.
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