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A chain of small Josephson junctions (aka superinductor) emerged recently as a high-inductance,
low-loss element of superconducting quantum devices. We notice that the intrinsic parameters of a
typical superinductor in fact place it into the Bose glass universality class for which the propagation

of waves in a sufficiently long chain is hindered by pinning.

Its weakness provides for a broad

crossover from the spectrum of well-resolved plasmon standing waves at high frequencies to the low-
frequency excitation spectrum of a pinned charge density wave. We relate the scattering amplitude
of microwave photons reflected off a superinductor to the dynamics of a Bose glass. The dynamics at
long and short scales compared to the Larkin pinning length determines the low- and high-frequency

asymptotes of the reflection amplitude.

Interaction between particles gives rise to collective ex-
citations in a many-body system. In the case of Coulomb
interaction, these are the well-known plasma oscillation
modes. The long-range interaction between particles con-
fined to one or two dimensions (1D or 2D) may be cut-off
by the polarizability of the surrounding medium. Trans-
lational invariance in 1D or 2D then results in the sound-
like plasmon spectrum at low frequency. An ubiquitously
present disorder breaks translational invariance and pos-
sibly affects the spectrum of low-frequency excitations.
The competition between interaction and disorder sets
the stage to a possible localization transition in a many-
body system. This competition in 1D was addressed by
means of perturbative renormalization group (RG) the-
ory by Giamarchi and Schulz [1]. Interaction in 1D can
be characterized by a dimensionless parameter K related
to the magnitude of zero-point fluctuations of the parti-
cles’ density (the classical limit is K — 0). It turns out
that the disorder potential is irrelevant at K > 3/2 and
the sound-like mode does exist down to the smallest wave
vectors (¢ — 0). However, at K < 3/2 even an infinites-
imally weak disorder results in localization, severely af-
fecting the properties of 1D systems at long spatial scales.
Attempts to understand the localized phase have led to
the notion of Bose glass phase [2] and to establishing its
links to the pinned vortices in superconductors [3], do-
main walls in magnets [4], and “classical” charge-density
waves in normal metals [5].

In the localized phase, the static spatial order is de-
stroyed on the scale exceeding the Larkin length, R,,
which was first introduced [3] for the collective pinning
of vortices (these were modeled as classical particles).
For weak pinning, R, exceeds significantly the inter-
particle distance. Elastic properties of the pinned sys-
tem on length scales shorter than R, are hardly affected
by pinning. Respectively, in a non-dissipative system ex-
citations with frequencies w 2 w, = v/R, may still be
approximated by propagating waves (here v is the propa-
gation velocity) [6]. Pinning drastically changes the exci-
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FIG. 1. Microwave photons incident from a waveguide are
reflected off a superinductor formed of N Josephson junctions
in series.

tation spectrum at frequencies w < wy. The correspond-
ing density of modes arises from the statistics of specific
configurations of disorder supporting localized-in-space
low-frequency excitations [5-12]. The found [9-12] limit-
ing low-frequency behavior of the density of modes (per

unit volume) is v(w) o< w?.

Conductivity o(w), being sensitive to the frequency de-
pendence of the transition matrix elements along with
that for the density of modes, carries some informa-
tion regarding the dynamics of charge density waves.
It was predicted to have a maximum at w ~ w,, see,
e.g., [13-16]. Experiments performed with a 2D electron
gas in GaAs heterostructures qualitatively confirmed the
predictions, but disagreed with them quantitatively, see
[17] for a review. In 1D, the physics of charge density
waves was addressed in an experiment [18] where nonlin-
ear current-voltage characteristics of Josephson-junction
chains were studied. The tell-tale signature of the pin-
ning was the appearance of dissipative current above a
threshold voltage and a specific, systematic dependence
of the threshold voltage on the parameters of a chain.
The threshold voltage is related to the pinning energy at
scale R, [19, 20], which is the basic property of the static
pinning configuration.

In this work, we elucidate a way to study the dy-
namics of charge-density waves with a special type of



Josephson-junction arrays, known as superinductors.
Developed in the context of superconducting quantum
devices [21], superinductors are linear elements combin-
ing high inductance with a small stray capacitance. An
equivalent circuit of a superinductor is shown in Fig. 1.
Large inductance and linearity are achieved by making
the number of junctions large, N > 1, and quantum
fluctuations of the phase across a single junction small,
E;/Ec > 1, while having small stray capacitance
calls for a very small ratio Ec/E, [here E; is the
Josephson energy of a single junction, E, = 4e*/(2C,)
and Ec = 4e?/(20) are the charging energies for
an extra Cooper pair associated, respectively, with
the superconducting island’s stray capacitance Cj
and the junction capacitance C'; the parameters were
N ~ 10%, E;/Ec ~ 20, and Ec/E, ~ 107* in the
experiment [21]]. The product of E;/Ec and Ec/E,
turns out to be small, resulting in K < 1, so nominally
superinductors are insulators. However, the amplitude of
quantum phase slips and therefore the pinning potential
are exponentially small, exp(—+/32F;/E¢) < 1. Unless
N > 1 compensates for that smallness, phase slips
are rare and the superinductor faithfully performs its
inductance function in a circuit [21-24]. Recently, even
longer chains with N ~ 10* were developed [25] for
which the statistics of quantum phase fluctuations allows
a finite density of quantum phase slips to appear. This,
in turn, enables weak pinning of charge density waves.
Realization of the pinning potential depends on the
random background charges in the environment of the
chain. These are slowly fluctuating in time [26], provid-
ing a tool for the ensemble averaging of observables. We
evaluate the most accessible one, which is the ensemble-
averaged reflection amplitude off a chain, (r(w)), find its
relation to the local density of states of excitations, and
predict the low- and high-frequency asymptotes of (r(w)).

We model the superinductor with the Hamiltonian

Z QnCrmQm—E. Z cos(

where ¢, and @,, are canonically conjugated phase and
charge of each superconducting island along the chain,
[on, @Qm] = 2€i0, m. The first term in Eq. (1) describes
the electrostatic coupling with elements C,,,, = (2C+C,)
and C,,,+1 = —C of the capacitance matrix, the second
term describes the Josephson coupling between succes-
sive islands. Hamiltonian (1) can be used if the tem-
perature, charging, and Josephson energy are smaller
than the superconducting gap. The small stray capac-
itance corresponds to a large charge screening length,
lse = a\/C/Cy > a, where a is the unit cell length.

In harmonic approxnnatlon Hamiltonian (1) yields the

dispersion relation w(q) = vlg|/+/1 + (vq/)?, where v =
a\/2E;E,/his the plasmon velocity and Q = \/QEJE /h

is the single-junction plasma frequency. Modes with

(pn+1) ’ (1)

cham =

w(q) = v|q| are adequately described by a harmonic
string Hamiltonian,

Ho = / do V”K 2h (0.0 @)

acting on states with energies within the bandwidth
~ hQ. Here 6 and IT = —(h/7)0,p are two canonically
conjugated fields, [0(x),II(z")] = ihd(z—2'), where ¢ and
p = —(1/m)0,0 are the coarse-grained phase and Cooper-
pair density along the chain, respectively. The parame-
ter K = m\/E;/(2E,) is related to the low-frequency
impedance Z of the chain, K = wh/(4e*Z).

Quantum phase slips allow for jumps of the phase dif-
ferences ¢,, — @n+1 between the minima of the Josephson
energy in Eq. (1). Rare phase slips can be accounted
for by adding [27] a perturbative term to the Hamilto-
nian (2),

H=Hy— é/daccos(%—i—x). (3)
a

Operators e=21(*) appearing in Eq. (3) create +27-kinks

at position z in the field ¢(z). The classical field x(z)
leads to the Aharonov-Casher effect in the probability
amplitudes of phase slips [28, 29].

Field x(z) = 27 [* d2’'py(2’) is random, py(z) is the
density of coarse-grained offset charges. A maximal dis-
order corresponds to offset charges fluctuating indepen-
dently and randomly in each superconducting island. It
yields a Gaussian correlator

1

(cos x(x) cos x(x')) = 5@(5(;{: -2, (4)
where (---) stands for disorder averaging, for the field
cos x (a similar relation holds for the field sin y) on spa-
tial scales larger than fs.. Furthermore, a recent exper-
iment [26] reported timescale ¢, ~ lmin for the offset
charge fluctuations of a single island. Extrapolating their
results to a chain yields a timescale t./N for scrambling
the Aharonov-Casher phase in a chain of N junctions.

Due to the separation of scales in the plasmon spec-
trum at Cy/C < 1 and the known full solution [30, 31]
of the phase-slip problem at C,/C = 0, it is possible, in
contrast to the phenomenological treatments [27, 32], to
derive Hamiltonian (3) and evaluate A in terms of micro-
scopic parameters,

A:%(2E§E6)1/4e_\/32EJ/EC at E;>E.. (5)
s

Once A is known, the O(1) uncertainty in the bandwidth
~ h) translates, at K < 1, into a negligible O(K) uncer-
tainty in the low-frequency (w < ) observables which
we aim to evaluate.

In the thermodynamic limit (infinitely long chain), the
perturbative RG flow associated with the Hamiltonian



(3) is given by the Giamarchi-Schulz scaling [1]

dD(A)
dl

~ (3 - 2K)D(A). (6)

The unitless function D(A) here describes the evolution
of the phase slip probability in the process of coarse-
graining, A is the running momentum cutoff, and dl =
—dA/A. The initial condition for Eq. (6) is D(Ag) =
vA?/(a2?) with X of Eq. (5) and Ag ~ Q/v. Equation (6)
signals a transition between a superfluid phase (K > K.)
and a Bose glass (K < K.) at K. = 3/2. At small fugac-
ity exp(—+/32E;/E.), see Eq. (5), one may disregard the
renormalization [1] of K in finding the transition condi-
tion, E, = (2n%/9)E.

In the classical limit (K — 0 and i — 0 at fixed finite
K/h), one may neglect the kinetic term in Eq. (3) and
estimate the Larkin length for the static pinning of the
charge density from energy arguments: On one hand, a
deformation of a static field 6(x) by 27 over the length R
costs an elastic energy ~ fiv/(KR). On the other hand,
for a constant field @, the disorder-averaged pinning en-
ergy vanishes, while its typical value for a given disorder
configuration is estimated as ~ Ay/R/a using the cor-
relator (4). The pinning energy dominates the elastic
one if R > R,, where R, = a{liv/[aK\(R,)]}*/. Us-
ing here the renormalized phase slip amplitude A(R) =
A(R/ls.)™¥ instead of its bare value (5) allows us to
account for quantum fluctuations on short length scales
R < R,. Solving then for R,, and using v/a = Q4/C/Cy,
we find the generalized Larkin length,

2/(3—2K) (1-K)/(3—2K)
Ro—al <C @
KX C,

Remarkably, 1/R, coincides with the momentum scale
at which the perturbative RG, cf. Eq. (6), breaks down,
D(1/R,) ~ 1. (Note that R, diverges at K = 3/2).

We are now ready to formulate the problem of the
elastic scattering of microwave photons off a Josephson-
junction chain of a finite length d. For this, we consider
the same Hamiltonian (3) but with spatially nonuniform
parameters such that it describes a waveguide with plas-
mon velocity vy and impedance Zy = 7h/(4e?Ky) (and
without phase slips, A = 0) at « < 0, and the superin-
ductor at 0 < z < d, see Fig. 1. The equations of motion
derived from Eq. (3) yield § = —v2926+(2)/a) sin(20+x)
together with the boundary conditions expressing the
continuity of current, 8;0(0%,t) = 8,60(07,¢), and volt-
age, (v/K)0.0(0%,t) = (vo/Ko)d,0(0~,t), at the inter-
face between the waveguide and the chain, as well as
the absence of current, 0:6(d,t) = 0 at the other end of
the chain. Taking the classical limit, we can now define
the reflection amplitude r(w) at frequency w, such that
the solution of these equations is expressed as 0(z,t) =
0(x) + (x)e” ™!, where () is a static charge density
that minimizes the (classical) energy, and ¥ (z) describes

small oscillations around it. The linearized equation of
motion takes a form similar to the Schrédinger equation,

Wi = —0?PY +V(z)y at 0<z<d, (8)
with the normalization condition

P(x) = T/ p(w)e /v at x<0, (9
and potential V(z) = (47K \v/ha)cos(20(z) + x(z))
which is determined both by the offset charge disorder
and the static charge density ().

The impedance of typical waveguides is of the order of
the vacuum impedance, Z,. ~ 377€); thus, K <« Kj.
Using this, we can find an expression for r(w) in terms
of the properties of the chain valid at arbitrary disorder
configuration. Namely, we observe that, at K/Ky — 0,
the chain is disconnected from the waveguide. Thus,
it admits a set of discrete bound states with eigenfre-
quencies w, and eigenfunctions v, (x), which satisfy the
Schrodinger equation (8) with non-radiative boundary
conditions, 9,¢,(0") = 0 and %,(d) = 0, correspond-
ing to the absence of accumulated charge at x = 0T
and to zero current at x = d, respectively. We also im-
pose the normalization condition 1/d fod dry2(z) = 1.
At small but finite K /K, these solutions become quasi-
bound states: they emit plasmons in the waveguide, such
that ¢(z < 0) = (07 )e~™n®/% with (0~) = 1, (0F)
according to the boundary condition for current con-
tinuity at « = 0. The energy stored in the bound
state is E,, = w2d/(mvK), while the energy emitted in
the waveguide is characterized by the Poynting vector
P = w2¢2(0%)/(nKp). The rate of energy loss, I, =
P/E, = 92(07)(K/Kq)v/d, gives the level width of the
quasi-bound state. We can now use the Breit-Wigner for-
mula to account for the contribution of all quasi-bound
states, r(w) = —1+i), Iy /(w—wp+il', /2). Let us now
introduce a Green function of the chain, which solves

[w? + %07 — V(2)] G(z,2";w) = mvd(z —2')  (10)

with boundary conditions 9, G(0, z';w) = G(x,d;w) = 0.
Introducing the local plasmon density of states
2w

v(z,w) = —%Im G(z,z;w), (11)
defining vy = 1/(wv), and using the complete basis of
normalized eigenstates 1, (x) to express the Green func-
tion allows us to find a relation between the real part of
the reflection amplitude and the density of states at the
edge of the chain,

(12)
The random charge realization changes on time scale

t./N far exceeding the typical plasmon propagation time
d/v. For a static disorder, r(w) is the sum of narrow



peaks corresponding to plasmon resonances in the finite-
size chain. We now evaluate its disorder average, as-
suming that the measurement time exceeds t./N, thus
facilitating the averaging.

At large frequencies, w > wy, the plasmon wavelength
v/w is much smaller than R,. This justifies neglecting
the spatial variations of the static field # appearing in
the disorder potential in Eq. (8), which then becomes
Gaussian. The potential induces both forward- and back-
scattering characterized by a frequency-dependent mean-
free path evaluated, within Born approximation, and us-
ing Eqgs. (4) and (7), as

((w) = vT(Ww) = Ry(w/wy)?. (13)

Ignoring the back-scattering for a while, we readily find
that the local density of states is expressed as v(0,w) =
1/dy>, 6(w — wy), where w, = (n + 1/2)A + 7, cor-
responds to a spectrum of plasmon resonances nomi-
nally spaced by A = wv/d and randomly shifted by
Vn A 1/(2dwn)f0d dzVy(z), where Vj is the “smooth”
component of V. Gaussian average over Vj yields an
“inhomogeneous broadening” of the peaks in (v(0,w)),
which acquire a Gaussian lineshape.

Accounting for both forward- and back-scattering in
the evaluation of (v(0,w)) at large frequency w > w, can
be performed with the Fokker-Planck method, see Sec. I
of the Supplemental Material (SM) [33]; it only modifies
the width of the Gaussian lineshapes, compared with the
forward-scattering case. The result is

o~ [w=(m+1/2) A1 /[272 (w)] ’

w(0,0)) =205 \/%AM

(14)
with the frequency-dependent width of the resonances,

q\ 2
and  wer = V3w, () . (15)

wcr

The Gaussian-shaped resonances are well-separated as
long as y(w) < A, corresponding to the frequency range
w > we; or, equivalently, for a chain’s length d < ¢(w).

At frequencies below the crossover, w < we;, the res-
onances overlap, gradually suppressing the amplitude of
oscillations of r(w). Using the Poisson summation for-
mula to transform Eq. (14), we find

(v(0,w)) =21y [1 —2cos (2rw/A) 6_2(7“"“/“’)2] (16)

in the frequency range w, < w <K wey.

The leading term in Eq. (16) is independent of fre-
quency, as at w > w, the adjustment of the static config-
uration 0(z) to the external charge disorder realization is
not important. In contrast, at w < w, the plasmon wave-
length becomes of the order of the correlation length of
6(x). In this limit, the oscillatory part of (r(w)) remains
exponentially small, but — in addition — the leading term

4

in Eq. (16) becomes a function of w/w,. The w/w, — 0
asymptote of that function is a power-law with a univer-
sal exponent,

(v(z =0,w)) = Cro(w/w)? at wiw, < 1. (17)

To see the universality of the exponent, we consider a
sequence of models bridging the limits of weak and strong
pinning, and then apply the ideas [6, 9-12] developed
for the density of states in the bulk to derive the edge
property (v(x = 0,w)). Then, we find the constant C' =~
0.032 by a numerical simulation.

To motivate Eq. (17), we may assume the chain to
be half-infinite, as the boundary condition at z = d
should not matter due to the wave localization. The low-
frequency plasmon spectrum will be contributed by the
soft oscillation modes in special, barely stable configura-
tions of disorder built in the vicinity of the x = 0 edge
of the chain. Next, we generalize the considered-so-far
Gaussian model of disorder in continuum by substituting
Hamiltonian (3) and correlator (4) with

H=Hy,— \/% ;cos(%(xj) +x5), (18)

where x; and z; are, respectively, the random phases
associated with and random locations of discrete impuri-
ties. By varying their density ¢ from a large value down
to ¢ < 1/a one crosses over between the limits of weak
collective and strong individual-impurities pinning. The
latter limit is amenable to the analytical treatment [6, 9].

Infinitely-strong pinning on separate impurities re-
duces the system to a sequence of independent seg-
ments [6]. Finite-strength impurities allow for special
configurations carrying soft excitations with arbitrarily-
low frequency, as was noticed in [9]. Closely following
that work, we consider the needed three-impurity con-
figurations in the vicinity of * = 0. The only differ-
ence from [9] is that we impose the boundary condition
0:0(0) = 0 on the static charge distribution. Follow-
ing [9], we find impurity configurations resulting in the
low-frequency local modes of the pinned elastic string. It
is tedious but straightforward (see Sec. IT of SM [33]) to
show that the boundary condition at z = 0 does not
affect the w — 0 asymptote of the density of states,
(v(w)) < w*. As argued in [10-12], the functional form
of the asymptote is universal and remains the same in
the limit of weak pinning, which is of direct interest in
the context of this work.

The considerations that led to Eq. (17) are substanti-
ated — and the proportionality coefficient in it is found —
in a numerical simulation presented in Sec. III of SM [33],
and whose result is illustrated in Fig. 2.

Using Eq. (12) and the results (14), (16), and (17),
we can now predict the overall evolution of the photon
reflection amplitude with the increase of frequency. The
microwave photons are fully reflected with (r') ~ —1 at
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FIG. 2. Frequency dependence of the edge density of states,
numerically evaluated and averaged over 5000 disorder con-
figurations in a chain of length d = 7.4R, (straight line).
For comparison, analytically obtained asymptotes, Eq. (14)
(dashed line) and Eq. (17) (dotted line), are also plotted.

w K wy; according to Eq. (17), the average reflection in-
creases approaching (r') = —1+2K/Kj at w ~ w,. Upon
further increase of w, the prominence of the spatial res-
onances in (r’'(w)) raises, and they become well-resolved
at w > wer, see Egs. (16) and (14). In the latter regime,
the width of resonances translates into the quality factor
Q = w/[(4In2)y(w)] x w?. We emphasize that the Q-
factor of the resolved resonances, according to our theory,
comes from the ensemble averaging applied to the elastic
plasmon propagation. We note in passing, that the in-
elastic scattering, considered in [34, 35] in the context of
plasmon decay at d — oo, results in a minor contribution
to 1/Q of well-resolved spatial resonances at finite d, see
Sec. IV of SM [33].

In conclusion, microwave photon scattering off a su-
perinductor may open a new way to study pinning in
a one-dimensional quantum system. This work was de-
voted to the theory of reflection amplitude in the limit
of small quantum fluctuations (K < 1). The reflection
amplitude was recently measured [25] for a variety of su-
perinductors; in a qualitative agreement with our predic-
tions, the increase of the @-factor with the microwave
frequency was seen for samples with the highest proba-
bility of quantum phase slips.
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